
Introduction Proof overview Open problems Thanks

Decision list compression by mild random
restrictions

Kewen Wu
Peking University → UC Berkeley

STOC, 2020

Shachar Lovett Jiapeng Zhang
UCSD Harvard → USC

1 / 23



Introduction Proof overview Open problems Thanks

Section 1

Introduction

2 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Decision list L = ((C1, v1), (C2, v2), . . . , (Cm, vm)) is

If C1(x) = True then output v1,
else if C2(x) = True then output v2,
...,
else if Cm(x) = True then output vm.

Ci is a conjunction of literals, e.g., x1 ∧ ¬x2 ∧ x4
The last rule is default: Cm ≡ True

Its size is the number of rules

Its width is the maximal number of literals in Ci

3 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Decision list L = ((C1, v1), (C2, v2), . . . , (Cm, vm)) is

If C1(x) = True then output v1,
else if C2(x) = True then output v2,
...,
else if Cm(x) = True then output vm.

Ci is a conjunction of literals, e.g., x1 ∧ ¬x2 ∧ x4
The last rule is default: Cm ≡ True

Its size is the number of rules

Its width is the maximal number of literals in Ci

3 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Example

Assume L = ((x1, 1), (¬x2 ∧ x3, a), (x1 ∧ x4, 5), (1, 3)). Then

its size is 4;

its width is 2.

If x1 = True then output 1,
else if ¬x2 ∧ x3 = True then output a,
else if x1 ∧ x4 = True then output 5,
else output 3.

4 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Example

Assume L = ((x1, 1), (¬x2 ∧ x3, a), (x1 ∧ x4, 5), (1, 3)). Then

its size is 4;

its width is 2.

If x1 = True then output 1,
else if ¬x2 ∧ x3 = True then output a,
////////else if///////////////////x1 ∧ x4 = True///////then/////////output///5,
else output 3.

4 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Let L = ((C1, v1), . . . , (Cm, vm)) be some width-w DL.

L generalizes width-w DNFs.
If v1 = · · · = vm−1 = 1, vm = 0, then L = C1 ∨ · · · ∨ Cm−1.

L generalizes width-w CNFs.
If v1 = · · · = vm−1 = 0, vm = 1, then L = ¬C1 ∧ · · · ∧ ¬Cm−1.

Actually L can be strictly more expressive than width-w
DNFs/CNFs.

5 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Let L = ((C1, v1), . . . , (Cm, vm)) be some width-w DL.

L generalizes width-w DNFs.
If v1 = · · · = vm−1 = 1, vm = 0, then L = C1 ∨ · · · ∨ Cm−1.

L generalizes width-w CNFs.
If v1 = · · · = vm−1 = 0, vm = 1, then L = ¬C1 ∧ · · · ∧ ¬Cm−1.

Actually L can be strictly more expressive than width-w
DNFs/CNFs.

5 / 23



Introduction Proof overview Open problems Thanks

Decision list (DL)

Let L = ((C1, v1), . . . , (Cm, vm)) be some width-w DL.

L generalizes width-w DNFs.
If v1 = · · · = vm−1 = 1, vm = 0, then L = C1 ∨ · · · ∨ Cm−1.

L generalizes width-w CNFs.
If v1 = · · · = vm−1 = 0, vm = 1, then L = ¬C1 ∧ · · · ∧ ¬Cm−1.

Actually L can be strictly more expressive than width-w
DNFs/CNFs.

5 / 23



Introduction Proof overview Open problems Thanks

Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε-approximation)

f is ε-approximated by g if Prx∼{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem (Decision list compression)

Any width-w DL can be ε-approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w) for
DNFs.

Lovett and Zhang 2019: s = (1/ε)O(w).

Now: s = poly
(
2w+log(1/ε)

w

)
and this is tight.

6 / 23



Introduction Proof overview Open problems Thanks

Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε-approximation)

f is ε-approximated by g if Prx∼{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem (Decision list compression)

Any width-w DL can be ε-approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w) for
DNFs.

Lovett and Zhang 2019: s = (1/ε)O(w).

Now: s = poly
(
2w+log(1/ε)

w

)
and this is tight.

6 / 23



Introduction Proof overview Open problems Thanks

Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε-approximation)

f is ε-approximated by g if Prx∼{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem (Decision list compression)

Any width-w DL can be ε-approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w) for
DNFs.

Lovett and Zhang 2019: s = (1/ε)O(w).

Now: s = poly
(
2w+log(1/ε)

w

)
and this is tight.

6 / 23



Introduction Proof overview Open problems Thanks

Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε-approximation)

f is ε-approximated by g if Prx∼{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem (Decision list compression)

Any width-w DL can be ε-approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w) for
DNFs.

Lovett and Zhang 2019: s = (1/ε)O(w).

Now: s = poly
(
2w+log(1/ε)

w

)
and this is tight.

6 / 23



Introduction Proof overview Open problems Thanks

Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε-approximation)

f is ε-approximated by g if Prx∼{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem (Decision list compression)

Any width-w DL can be ε-approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w) for
DNFs.

Lovett and Zhang 2019: s = (1/ε)O(w).

Now: s = poly
(
2w+log(1/ε)

w

)
and this is tight.

6 / 23



Introduction Proof overview Open problems Thanks

Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of
small width.

Corollary (Junta theorem)

Small-width DLs can be approximated by a function depending on
few input bits.

7 / 23



Introduction Proof overview Open problems Thanks

Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of
small width.

Corollary (Junta theorem)

Small-width DLs can be approximated by a function depending on
few input bits.

7 / 23



Introduction Proof overview Open problems Thanks

Applications

Theorem (Jackson’s harmonic sieve 1997)

Small-size DNFs are PAC learnable under the uniform distribution
with membership queries.

Corollary (Learning small-width DNFs)

Small-width DNFs are PAC learnable under the uniform
distribution with membership queries.

8 / 23



Introduction Proof overview Open problems Thanks

Section 2

Proof overview

9 / 23



Introduction Proof overview Open problems Thanks

More definitions

Let L = ((C1, v1), . . . , (Cm, vm)) be a DL.

Definition (Index function)

IndL(x) is the index of the first satisfied rule in L(x).

Definition (Useful index)

Index i is useful if there exists some x such that IndL(x) = i.
#useful (L) is the number of useful indices in L.

Example

Assume L = ((x1, v1), (x1 ∧ x2, v2), (1, v3)).
Then IndL(x1 = 1, x2 = 1) = 1 and #useful (L) = 2.

10 / 23



Introduction Proof overview Open problems Thanks

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (Håstad’s switching lemma 1987)

Let f be a width-w DNF, α ∈ (0, 1), and d be an integer.
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

Pr
ρ
[DT(f �ρ) ≥ d] ≤ (5αw)d.

Meaningful only when α ≤ O(1/w) =⇒ most bits are fixed.

11 / 23



Introduction Proof overview Open problems Thanks

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (Håstad’s switching lemma 1987)

Let f be a width-w DNF, α ∈ (0, 1), and d be an integer.
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

Pr
ρ
[DT(f �ρ) ≥ d] ≤ (5αw)d.

Meaningful only when α ≤ O(1/w) =⇒ most bits are fixed.

11 / 23



Introduction Proof overview Open problems Thanks

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (Håstad’s switching lemma 1987)

Let f be a width-w DNF, α ∈ (0, 1), and d be an integer.
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

Pr
ρ
[DT(f �ρ) ≥ d] ≤ (5αw)d.

Meaningful only when α ≤ O(1/w) =⇒ most bits are fixed.

11 / 23



Introduction Proof overview Open problems Thanks

Step 1: mild randomness also kills structure

Let’s directly analyze L’s size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and α ∈ (0, 1).
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

E
ρ
[#useful (L �ρ)] ≤

(
4

1− α

)w
.

Meaningful for all kinds of α.

Prove by encoding ρ together with a useful index in L �ρ.

12 / 23



Introduction Proof overview Open problems Thanks

Step 1: mild randomness also kills structure

Let’s directly analyze L’s size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and α ∈ (0, 1).
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

E
ρ
[#useful (L �ρ)] ≤

(
4

1− α

)w
.

Meaningful for all kinds of α.

Prove by encoding ρ together with a useful index in L �ρ.

12 / 23



Introduction Proof overview Open problems Thanks

Step 1: mild randomness also kills structure

Let’s directly analyze L’s size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and α ∈ (0, 1).
If ρ randomly restricts each input bit to 0, 1, ∗ w.p.
(1− α)/2, (1− α)/2, α, then

E
ρ
[#useful (L �ρ)] ≤

(
4

1− α

)w
.

Meaningful for all kinds of α.

Prove by encoding ρ together with a useful index in L �ρ.

12 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – redundant rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

If index i is not useful, we can safely remove the i-th rule.

If x1 = True then output v1,
else if x1 ∧ x2 = True then output v2,
else output v3.

⇓
If x1 = True then output v1,
////////else if///////////////////x1 ∧ x2 = True///////then/////////output////v2,
else output v3.

13 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – redundant rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

If index i is not useful, we can safely remove the i-th rule.

If x1 = True then output v1,
else if x1 ∧ x2 = True then output v2,
else output v3.

⇓
If x1 = True then output v1,
////////else if///////////////////x1 ∧ x2 = True///////then/////////output////v2,
else output v3.

13 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – redundant rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

If index i is not useful, we can safely remove the i-th rule.

If x1 = True then output v1,
else if x1 ∧ x2 = True then output v2,
else output v3.

⇓
If x1 = True then output v1,
////////else if///////////////////x1 ∧ x2 = True///////then/////////output////v2,
else output v3.

13 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – less useful rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

Let p(i) = Prx [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.

14 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – less useful rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

Let p(i) = Prx [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.

If x1 ∧ x2 ∧ · · · ∧ xw = True then output v1,
else if x1 = True then output v2,
else output v3.

p(1) = 2−w, p(2) ≈ 1/2, p(3) ≈ 1/2.

14 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – less useful rules

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

Let p(i) = Prx [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.

If x1 ∧ x2 ∧ · · · ∧ xw = True then output v1,
else if x1 = True then output v2,
else output v3.

⇓ lose ε = 2−w

//If/////////////////////////////////x1 ∧ x2 ∧ · · · ∧ xw = True///////then/////////output///v1,
/////else if x1 = True then output v2,
else output v3.

14 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – approximator

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

Assume p(i) = Prx [IndL(x) = i] is decreasing in i for
simplicity.

Let approximator L′ = ((C1, v1), . . . , (Ct, vt), (Cm, vm)).

Then
it has

width w;
size t+ 1;
approximation factor

ε = Pr [L(x) 6= L′(x)] ≤ Pr [IndL(x) > t] =
∑
i>t

p(i).

15 / 23



Introduction Proof overview Open problems Thanks

Step 2: compression – approximator

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL.

Assume p(i) = Prx [IndL(x) = i] is decreasing in i for
simplicity.

Let approximator L′ = ((C1, v1), . . . , (Ct, vt), (Cm, vm)).Then
it has

width w;
size t+ 1;
approximation factor

ε = Pr [L(x) 6= L′(x)] ≤ Pr [IndL(x) > t] =
∑
i>t

p(i).

15 / 23



Introduction Proof overview Open problems Thanks

Now what?

Let ρα be the random restriction with ∗-probability α.

What we can do so far?
We can analyze q(α, i) = Pr [index i is useful in L �ρα ], since∑

i

q(α, i) = E [#useful (L �ρα)] .

What we want to do next?
We want to bound p(i) = Pr [IndL(x) = i], since

ε = Pr
[
L(x) 6= L′(x)

]
≤
∑
i>t

p(i).

16 / 23



Introduction Proof overview Open problems Thanks

Step 3: noise stability

Let’s introduce noise stability to relate p(i) and q(α, i).

Definition (Noise distribution Nβ)

y ∼ Nβ(x) is sampled by taking Pr[yi = xi] = (1 + β)/2.

Then for x ∼ {0, 1}n, y ∼ Nβ(x), we can also do it by sampling

1. common restriction ρ = ρ1−β with ∗-probability 1− β.

2. x′ by uniformly filling out ∗’s in ρ, and set x = ρ ◦ x′.
3. y′ by uniformly filling out ∗’s in ρ, and set y = ρ ◦ y′.

17 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL and
fix an index i.

Recall

p(i) = Pr[IndL(x) = i];

q(α, i) = Pr[index i is useful in L �ρα ];

our goal is to “bridge” between p(i) and q(α, i).

Sample x = ρ ◦ x′ ∼ {0, 1}n, y = ρ ◦ y′ ∼ Nβ(x), ρ = ρ1−β and
define Stab(β, i) = Pr [IndL(x) = IndL(y) = i].

Stab(β, i) is the bridge.

18 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL and
fix an index i.

Recall

p(i) = Pr[IndL(x) = i];

q(α, i) = Pr[index i is useful in L �ρα ];

our goal is to “bridge” between p(i) and q(α, i).

Sample x = ρ ◦ x′ ∼ {0, 1}n, y = ρ ◦ y′ ∼ Nβ(x), ρ = ρ1−β and
define Stab(β, i) = Pr [IndL(x) = IndL(y) = i].

Stab(β, i) is the bridge.

18 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL and
fix an index i.

Recall

p(i) = Pr[IndL(x) = i];

q(α, i) = Pr[index i is useful in L �ρα ];

our goal is to “bridge” between p(i) and q(α, i).

Sample x = ρ ◦ x′ ∼ {0, 1}n, y = ρ ◦ y′ ∼ Nβ(x), ρ = ρ1−β and
define Stab(β, i) = Pr [IndL(x) = IndL(y) = i].

Stab(β, i) is the bridge.

18 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

Let L = ((C1, v1), . . . , (Cm, vm)) be a width-w DL and
fix an index i.

Recall

p(i) = Pr[IndL(x) = i];

q(α, i) = Pr[index i is useful in L �ρα ];

our goal is to “bridge” between p(i) and q(α, i).

Sample x = ρ ◦ x′ ∼ {0, 1}n, y = ρ ◦ y′ ∼ Nβ(x), ρ = ρ1−β and
define Stab(β, i) = Pr [IndL(x) = IndL(y) = i].

Stab(β, i) is the bridge.

18 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

For upper bound, we have

Fact (Hypercontractivity)

Stab(β, i) ≤ (Pr [IndL(x) = i])2/(1+β) = (p(i))2/(1+β) .

For lower bound, we can prove

Lemma

Stab(β, i) ≥ (Pr[IndL(x) = i])2/Pr[index i is useful in L �ρ]
= (p(i))2/q(1− β, i).

19 / 23



Introduction Proof overview Open problems Thanks

Step 4: bridging lemma

For upper bound, we have

Fact (Hypercontractivity)

Stab(β, i) ≤ (Pr [IndL(x) = i])2/(1+β) = (p(i))2/(1+β) .

For lower bound, we can prove

Lemma

Stab(β, i) ≥ (Pr[IndL(x) = i])2/Pr[index i is useful in L �ρ]
= (p(i))2/q(1− β, i).

19 / 23



Introduction Proof overview Open problems Thanks

Step 5: putting everything together

Lemma (Bridging lemma)

(p(i))2/q(1− β, i) ≤ Stab(β, i) ≤ (p(i))2/(1+β).

So we get p(i) ≤ q(1− β, i)(1+β)/2β.

Lemma (Encoding lemma)∑
i q(1− β, i) = E

[
#useful

(
L �ρ1−β

)]
≤ (4/β)w.

So we get q(1− β, i) ≤ (4/β)w/i assuming q is decreasing in i.

Theorem (Final bound)

ε = Pr[L(x) 6= L′(x)] ≤
∑

i>t p(i) ≤
∑

i>t[(4/β)
w/i](1+β)/2β.

Then we choose β = β(ε, w) to get optimal t.

20 / 23



Introduction Proof overview Open problems Thanks

Step 5: putting everything together

Lemma (Bridging lemma)

(p(i))2/q(1− β, i) ≤ Stab(β, i) ≤ (p(i))2/(1+β).

So we get p(i) ≤ q(1− β, i)(1+β)/2β.

Lemma (Encoding lemma)∑
i q(1− β, i) = E

[
#useful

(
L �ρ1−β

)]
≤ (4/β)w.

So we get q(1− β, i) ≤ (4/β)w/i assuming q is decreasing in i.

Theorem (Final bound)

ε = Pr[L(x) 6= L′(x)] ≤
∑

i>t p(i) ≤
∑

i>t[(4/β)
w/i](1+β)/2β.

Then we choose β = β(ε, w) to get optimal t.

20 / 23



Introduction Proof overview Open problems Thanks

Step 5: putting everything together

Lemma (Bridging lemma)

(p(i))2/q(1− β, i) ≤ Stab(β, i) ≤ (p(i))2/(1+β).

So we get p(i) ≤ q(1− β, i)(1+β)/2β.

Lemma (Encoding lemma)∑
i q(1− β, i) = E

[
#useful

(
L �ρ1−β

)]
≤ (4/β)w.

So we get q(1− β, i) ≤ (4/β)w/i assuming q is decreasing in i.

Theorem (Final bound)

ε = Pr[L(x) 6= L′(x)] ≤
∑

i>t p(i) ≤
∑

i>t[(4/β)
w/i](1+β)/2β.

Then we choose β = β(ε, w) to get optimal t.

20 / 23



Introduction Proof overview Open problems Thanks

Step 5: putting everything together

Lemma (Bridging lemma)

(p(i))2/q(1− β, i) ≤ Stab(β, i) ≤ (p(i))2/(1+β).

So we get p(i) ≤ q(1− β, i)(1+β)/2β.

Lemma (Encoding lemma)∑
i q(1− β, i) = E

[
#useful

(
L �ρ1−β

)]
≤ (4/β)w.

So we get q(1− β, i) ≤ (4/β)w/i assuming q is decreasing in i.

Theorem (Final bound)

ε = Pr[L(x) 6= L′(x)] ≤
∑

i>t p(i) ≤
∑

i>t[(4/β)
w/i](1+β)/2β.

Then we choose β = β(ε, w) to get optimal t.

20 / 23



Introduction Proof overview Open problems Thanks

Step 5: putting everything together

Lemma (Bridging lemma)

(p(i))2/q(1− β, i) ≤ Stab(β, i) ≤ (p(i))2/(1+β).

So we get p(i) ≤ q(1− β, i)(1+β)/2β.

Lemma (Encoding lemma)∑
i q(1− β, i) = E

[
#useful

(
L �ρ1−β

)]
≤ (4/β)w.

So we get q(1− β, i) ≤ (4/β)w/i assuming q is decreasing in i.

Theorem (Final bound)

ε = Pr[L(x) 6= L′(x)] ≤
∑

i>t p(i) ≤
∑

i>t[(4/β)
w/i](1+β)/2β.

Then we choose β = β(ε, w) to get optimal t.

20 / 23



Introduction Proof overview Open problems Thanks

Section 3

Open problems

21 / 23



Introduction Proof overview Open problems Thanks

Upper bound compression

Assume L is a width-w DNF.
L′ is constructed by removing rules of L, thus L′(x) ≤ L(x).

Now we want some DNF L′′ such that L′′(x) ≥ L(x).

Problem (Upper bound compression)

L can be ε-approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w).

Lovett, Solomon and Zhang 2019: in a restricted case,
s = ((logw)/ε)O(w) implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?

22 / 23



Introduction Proof overview Open problems Thanks

Upper bound compression

Assume L is a width-w DNF.
L′ is constructed by removing rules of L, thus L′(x) ≤ L(x).

Now we want some DNF L′′ such that L′′(x) ≥ L(x).

Problem (Upper bound compression)

L can be ε-approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w).

Lovett, Solomon and Zhang 2019: in a restricted case,
s = ((logw)/ε)O(w) implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?

22 / 23



Introduction Proof overview Open problems Thanks

Upper bound compression

Assume L is a width-w DNF.
L′ is constructed by removing rules of L, thus L′(x) ≤ L(x).

Now we want some DNF L′′ such that L′′(x) ≥ L(x).

Problem (Upper bound compression)

L can be ε-approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w).

Lovett, Solomon and Zhang 2019: in a restricted case,
s = ((logw)/ε)O(w) implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?

22 / 23



Introduction Proof overview Open problems Thanks

Upper bound compression

Assume L is a width-w DNF.
L′ is constructed by removing rules of L, thus L′(x) ≤ L(x).

Now we want some DNF L′′ such that L′′(x) ≥ L(x).

Problem (Upper bound compression)

L can be ε-approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w).

Lovett, Solomon and Zhang 2019: in a restricted case,
s = ((logw)/ε)O(w) implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?

22 / 23



Introduction Proof overview Open problems Thanks

Upper bound compression

Assume L is a width-w DNF.
L′ is constructed by removing rules of L, thus L′(x) ≤ L(x).

Now we want some DNF L′′ such that L′′(x) ≥ L(x).

Problem (Upper bound compression)

L can be ε-approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: s = (w log(1/ε))O(w).

Lovett, Solomon and Zhang 2019: in a restricted case,
s = ((logw)/ε)O(w) implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?

22 / 23



Introduction Proof overview Open problems Thanks

Thanks!

23 / 23


	Introduction
	Proof overview
	Open problems
	Thanks

