Decision list compression by mild random restrictions

$\begin{array}{l} \mbox{Kewen Wu} \\ \mbox{Peking University} \rightarrow \mbox{UC Berkeley} \end{array}$

STOC, 2020

Shachar Lovett UCSD

 $\begin{array}{l} \text{Jiapeng Zhang} \\ \text{Harvard} \rightarrow \text{USC} \end{array}$

1 / 23

イロト 不得 トイヨト イヨト 二日

Section 1

Introduction

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < ⊇ / 23

Introduction 0●00000	Proof overview 00000000000	Open problems 00	Thanks 0

Decision list
$$L = ((C_1, v_1), (C_2, v_2), \dots, (C_m, v_m))$$
 is

If $C_1(x) =$ True then output v_1 , else if $C_2(x) =$ True then output v_2 ,

else if $C_m(x) =$ True then output v_m .

Introduction 0●00000	Proof overview 00000000000	Open problems 00	Thanks 0

Decision list
$$L = ((C_1, v_1), (C_2, v_2), \dots, (C_m, v_m))$$
 is

If $C_1(x) =$ True then output v_1 , else if $C_2(x) =$ True then output v_2 ,

else if $C_m(x) =$ True then output v_m .

- C_i is a conjunction of literals, e.g., $x_1 \wedge \neg x_2 \wedge x_4$
- The last rule is default: $C_m \equiv \text{True}$
- Its size is the number of rules

...,

• Its width is the maximal number of literals in C_i

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Example

Assume $L = ((x_1, 1), (\neg x_2 \land x_3, a), (x_1 \land x_4, 5), (1, 3))$. Then

- its size is 4;
- its width is 2.

If $x_1 = \text{True}$ then output 1, else if $\neg x_2 \land x_3 = \text{True}$ then output a, else if $x_1 \land x_4 = \text{True}$ then output 5, else output 3.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Example

Assume $L = ((x_1, 1), (\neg x_2 \land x_3, a), (x_1 \land x_4, 5), (1, 3))$. Then

- its size is 4;
- its width is 2.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be some width-w DL.

• L generalizes width-w DNFs. If $v_1 = \cdots = v_{m-1} = 1$, $v_m = 0$, then $L = C_1 \lor \cdots \lor C_{m-1}$.

Introduction	Proof overview	Open problems	Thanks
000000	00000000000	00	

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be some width-w DL.

■ L generalizes width-w DNFs. If $v_1 = \cdots = v_{m-1} = 1$, $v_m = 0$, then $L = C_1 \lor \cdots \lor C_{m-1}$. ■ L generalizes width-w CNFs. If $v_1 = \cdots = v_{m-1} = 0$, $v_m = 1$, then $L = \neg C_1 \land \cdots \land \neg C_{m-1}$.

Introduction	Proof overview	Open problems	Thanks
000000	00000000000	00	

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be some width-w DL.

L generalizes width-w DNFs.
If v₁ = ··· = v_{m-1} = 1, v_m = 0, then L = C₁ ∨ ··· ∨ C_{m-1}.
L generalizes width-w CNFs.
If v₁ = ··· = v_{m-1} = 0, v_m = 1, then L = ¬C₁ ∧ ··· ∧ ¬C_{m-1}.
Actually L can be *strictly* more expressive than width-w DNFs/CNFs.

<ロト < 回 > < 臣 > < 臣 > 王 の Q (C 5/23

Proof overview 00000000000	Open problems 00	Thanks 0
	Proof overview 00000000000	Proof overview Open problems 000000000000000000000000000000000000

Small-width DLs can be approximated by small-size DLs of small width.

Introduction	Proof overview	Open problems	Thanks
0000●00	00000000000	00	0

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε -approximation)

$$f$$
 is ε -approximated by g if $\Pr_{x \sim \{0,1\}^n}[f(x) \neq g(x)] \leq \varepsilon$.

Theorem (Decision list compression)

Any width-w DL can be ε -approximated by a width-w size-s DL.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε -approximation)

$$f$$
 is ε -approximated by g if $\operatorname{Pr}_{x \sim \{0,1\}^n}[f(x) \neq g(x)] \leq \varepsilon$.

Theorem (Decision list compression)

Any width-w DL can be ε -approximated by a width-w size-s DL.

Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$ for DNFs.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε -approximation)

$$f$$
 is ε -approximated by g if $\operatorname{Pr}_{x \sim \{0,1\}^n}[f(x) \neq g(x)] \leq \varepsilon$.

Theorem (Decision list compression)

Any width-w DL can be ε -approximated by a width-w size-s DL.

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$ for DNFs.
- Lovett and Zhang 2019: $s = (1/\varepsilon)^{O(w)}$.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Small-width DLs can be approximated by small-size DLs of small width.

Definition (ε -approximation)

$$f$$
 is ε -approximated by g if $\operatorname{Pr}_{x \sim \{0,1\}^n}[f(x) \neq g(x)] \leq \varepsilon$.

Theorem (Decision list compression)

Any width-w DL can be ε -approximated by a width-w size-s DL.

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$ for DNFs.
- Lovett and Zhang 2019: $s = (1/\varepsilon)^{O(w)}$.
- Now: $s = poly \binom{2w + \log(1/\varepsilon)}{w}$ and this is tight.

Introduction	Proof overview	Open problems	Thanks
00000000	00000000000		

Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of small width.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	00	0

Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of small width.

Corollary (Junta theorem)

Small-width DLs can be approximated by a function depending on few input bits.

Introduction	Proof overview	Open problems	Thanks
000000			

Applications

Theorem (Jackson's harmonic sieve 1997)

Small-size DNFs are PAC learnable under the uniform distribution with membership queries.

Corollary (Learning small-width DNFs)

Small-width DNFs are PAC learnable under the uniform distribution with membership queries.

Section 2

Proof overview

Introduction	Proof overview	Open problems	Thanks
0000000	o●ooooooooo	00	0

More definitions

Let
$$L = ((C_1, v_1), \dots, (C_m, v_m))$$
 be a DL.

Definition (Index function)

IndL(x) is the index of the first satisfied rule in L(x).

Definition (Useful index)

Index i is useful if there exists some x such that ${\rm Ind}L(x)=i.$ #useful (L) is the number of useful indices in L.

Example

Assume
$$L = ((x_1, v_1), (x_1 \land x_2, v_2), (1, v_3)).$$

Then $IndL(x_1 = 1, x_2 = 1) = 1$ and $\#useful(L) = 2.$

Proof overview	Open problems	Thanks
0000000000		

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (Håstad's switching lemma 1987)

Let f be a width-w DNF, $\alpha \in (0, 1)$, and d be an integer. If ρ randomly restricts each input bit to 0, 1, * w.p. $(1-\alpha)/2, (1-\alpha)/2, \alpha$, then

$$\Pr_{\rho}\left[\mathrm{DT}(f\restriction_{\rho})\geq d\right]\leq (5\alpha w)^{d}.$$

Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (Håstad's switching lemma 1987)

Let f be a width-w DNF, $\alpha \in (0, 1)$, and d be an integer. If ρ randomly restricts each input bit to 0, 1, * w.p. $(1 - \alpha)/2, (1 - \alpha)/2, \alpha$, then

$$\Pr_{\rho}\left[\mathrm{DT}(f\restriction_{\rho})\geq d\right]\leq (5\alpha w)^{d}.$$

• Meaningful only when $\alpha \leq O(1/w) \implies$ most bits are fixed.

Proof overview	Open problems	Thanks
0000000000		

Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.

Open problems

Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and $\alpha \in (0,1)$. If ρ randomly restricts each input bit to 0, 1, * w.p. $(1-\alpha)/2, (1-\alpha)/2, \alpha$, then

$$\mathbb{E}_{\rho}\left[\# \textit{useful}\left(L\restriction_{\rho}\right)\right] \leq \left(\frac{4}{1-\alpha}\right)^{w}$$

Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and $\alpha \in (0, 1)$. If ρ randomly restricts each input bit to 0, 1, * w.p. $(1 - \alpha)/2, (1 - \alpha)/2, \alpha$, then

$$\mathbb{E}_{\rho}\left[\# useful\left(L\restriction_{\rho}\right)\right] \leq \left(\frac{4}{1-\alpha}\right)^{w}$$

- Meaningful for all kinds of α .
- Prove by encoding ρ together with a useful index in $L \upharpoonright_{\rho}$.

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – redundant rules

- Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL.
 - If index *i* is not useful, we can safely remove the *i*-th rule.

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – redundant rules

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL.

■ If index *i* is not useful, we can safely remove the *i*-th rule.

If $x_1 = \text{True}$ then output v_1 , else if $x_1 \wedge x_2 = \text{True}$ then output v_2 , else output v_3 .

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – redundant rules

Let
$$L = ((C_1, v_1), \dots, (C_m, v_m))$$
 be a width- w DL.

If index i is not useful, we can safely remove the i-th rule.

If $x_1 = \text{True}$ then output v_1 , else if $x_1 \wedge x_2 = \text{True}$ then output v_2 , else output v_3 .

Step 2: compression - less useful rules

Let
$$L = ((C_1, v_1), \dots, (C_m, v_m))$$
 be a width- w DL.
• Let $p(i) = \Pr_x [IndL(x) = i]$, and sort it in descending order.

If p decays fast, we only need to keep the top few rules.

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – less useful rules

Let
$$L = ((C_1, v_1), \dots, (C_m, v_m))$$
 be a width- w DL.

■ Let p(i) = Pr_x [IndL(x) = i], and sort it in descending order. If p decays fast, we only need to keep the top few rules.

> If $x_1 \wedge x_2 \wedge \cdots \wedge x_w$ = True then output v_1 , else if x_1 = True then output v_2 , else output v_3 .

$$p(1) = 2^{-w}, p(2) \approx 1/2, p(3) \approx 1/2.$$

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – less useful rules

Let
$$L = ((C_1, v_1), \dots, (C_m, v_m))$$
 be a width- w DL.

• Let $p(i) = \Pr_x [IndL(x) = i]$, and sort it in descending order. If p decays fast, we only need to keep the top few rules.

> If $x_1 \wedge x_2 \wedge \cdots \wedge x_w$ = True then output v_1 , else if x_1 = True then output v_2 , else output v_3 .

$$\bigvee$$
 lose $\varepsilon = 2^{-w}$

 $f_{1}/f_{1}/f_{2}/f_{1}/f_{2}/f_{1}/f_{1}/f_{2}/f_{1}/f_{2$

Proof overview	Open problems	Thanks
00000000000		

Step 2: compression – approximator

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL.

- Assume p(i) = Pr_x [IndL(x) = i] is decreasing in i for simplicity.
- Let approximator $L' = ((C_1, v_1), \dots, (C_t, v_t), (C_m, v_m)).$

Proof overview	Open problems	Thanks
0000000000		

Step 2: compression – approximator

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL.

- Assume p(i) = Pr_x [IndL(x) = i] is decreasing in i for simplicity.
- Let approximator $L' = ((C_1, v_1), \dots, (C_t, v_t), (C_m, v_m))$. Then it has
 - width w;
 - size *t* + 1;
 - approximation factor

$$\varepsilon = \Pr\left[L(x) \neq L'(x)\right] \le \Pr\left[\mathsf{Ind}L(x) > t\right] = \sum_{i>t} p(i).$$

Introduction	Proof overview	Open problems	Thanks
0000000	ooooooooooo	00	0

Now what?

Let ρ_{α} be the random restriction with *-probability α .

What we can do so far? We can analyze $q(\alpha, i) = \Pr[\text{index } i \text{ is useful in } L \upharpoonright_{\rho_{\alpha}}]$, since

$$\sum_i q(\alpha, i) = \mathbb{E} \left[\# \mathsf{useful} \left(L \upharpoonright_{\rho_\alpha} \right) \right].$$

• What we want to do next? We want to bound $p(i) = \Pr[IndL(x) = i]$, since

$$\varepsilon = \Pr\left[L(x) \neq L'(x)\right] \le \sum_{i>t} p(i).$$

Introduction	Proof overview	Open problems	Thanks
0000000	000000000000	00	0

Step 3: noise stability

Let's introduce noise stability to relate p(i) and $q(\alpha, i)$.

Definition (Noise distribution \mathcal{N}_{β})

 $y \sim \mathcal{N}_{\beta}(x)$ is sampled by taking $\Pr[y_i = x_i] = (1 + \beta)/2$.

Then for $x \sim \{0,1\}^n, y \sim \mathcal{N}_\beta(x)$, we can also do it by sampling

- 1. common restriction $\rho = \rho_{1-\beta}$ with *-probability 1β .
- 2. x' by uniformly filling out *'s in ρ , and set $x = \rho \circ x'$.
- 3. y' by uniformly filling out *'s in ρ , and set $y = \rho \circ y'$.

Introduction	Proof overview	Open problems	Thanks
ooooooo	oooooooooooooooooooooooooooooooooooo	oo	0
Step 4: bridging	lemma		

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL and fix an index i.

Introduction 0000000	Proof overview 000000000●00	Open problems 00	Thanks 0

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL and fix an index i.

Recall

•
$$p(i) = \Pr[\operatorname{Ind} L(x) = i];$$

- $q(\alpha, i) = \Pr[\text{index } i \text{ is useful in } L \upharpoonright_{\rho_{\alpha}}];$
- our goal is to "bridge" between p(i) and $q(\alpha, i)$.

Introduction 0000000	Proof overview 0000000000000	Open problems 00	Thanks 0

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL and fix an index i.

Recall

■
$$p(i) = \Pr[\operatorname{Ind} L(x) = i];$$

■ $q(\alpha, i) = \Pr[\operatorname{index} i \text{ is useful in } L \upharpoonright_{\rho_{\alpha}}];$
■ our goal is to "bridge" between $p(i)$ and $q(\alpha, i)$.

$$\begin{split} \text{Sample } x &= \rho \circ x' \sim \{0,1\}^n, y = \rho \circ y' \sim \mathcal{N}_\beta(x), \rho = \rho_{1-\beta} \text{ and} \\ \text{define } \text{Stab}(\beta,i) &= \Pr\left[\text{Ind}L(x) = \text{Ind}L(y) = i\right]. \end{split}$$

Introduction	Proof overview	Open problems	Thanks
0000000	000000000000	00	0

Let $L = ((C_1, v_1), \dots, (C_m, v_m))$ be a width-w DL and fix an index i.

Recall

$$\begin{split} \text{Sample } x &= \rho \circ x' \sim \{0,1\}^n, y = \rho \circ y' \sim \mathcal{N}_\beta(x), \rho = \rho_{1-\beta} \text{ and} \\ \text{define } \text{Stab}(\beta,i) &= \Pr\left[\text{Ind}L(x) = \text{Ind}L(y) = i\right]. \end{split}$$

 $\mathsf{Stab}(\beta, i)$ is the bridge.

Proof overview	Open problems	Thanks
00000000000		

For upper bound, we have

Fact (Hypercontractivity)

$$Stab(\beta, i) \le (\Pr[IndL(x) = i])^{2/(1+\beta)} = (p(i))^{2/(1+\beta)}.$$

Proof overview	Open problems	Thanks
00000000000		

For upper bound, we have

Fact (Hypercontractivity)

$$Stab(\beta, i) \le (\Pr[IndL(x) = i])^{2/(1+\beta)} = (p(i))^{2/(1+\beta)}.$$

For lower bound, we can prove

Lemma

$$\begin{aligned} \mathsf{Stab}(\beta,i) &\geq (\Pr[\mathsf{Ind}L(x)=i])^2 / \Pr[\mathsf{index} \ i \ \mathsf{is useful in } L\restriction_{\rho}] \\ &= (p(i))^2 / q(1-\beta,i). \end{aligned}$$

Proof overview	Open problems	Thanks
0000000000		

Lemma (Bridging lemma)

 $(p(i))^2/q(1-\beta,i) \le Stab(\beta,i) \le (p(i))^{2/(1+\beta)}.$

Proof overview	Open problems	Thanks
0000000000		

Lemma (Bridging lemma)

 $(p(i))^2/q(1-\beta,i) \le Stab(\beta,i) \le (p(i))^{2/(1+\beta)}.$

So we get $p(i) \leq q(1-\beta,i)^{(1+\beta)/2\beta}$.

Proof overview	Open problems	Thanks
0000000000		

Lemma (Bridging lemma)

 $(p(i))^2/q(1-\beta,i) \le Stab(\beta,i) \le (p(i))^{2/(1+\beta)}.$

So we get $p(i) \leq q(1-\beta,i)^{(1+\beta)/2\beta}$.

Lemma (Encoding lemma)

$$\sum_{i} q(1-\beta,i) = \mathbb{E}\left[\# \textit{useful}\left(L \upharpoonright_{\rho_{1-\beta}}\right) \right] \le (4/\beta)^w.$$

Proof overview	Open problems	Thanks
0000000000		

Lemma (Bridging lemma)

 $(p(i))^2/q(1-\beta,i) \le Stab(\beta,i) \le (p(i))^{2/(1+\beta)}.$

So we get $p(i) \leq q(1-\beta,i)^{(1+\beta)/2\beta}$.

Lemma (Encoding lemma)

$$\sum_{i} q(1-\beta,i) = \mathbb{E}\left[\# useful\left(L \upharpoonright_{\rho_{1-\beta}}\right)\right] \le (4/\beta)^{w}.$$

So we get $q(1-\beta,i) \leq (4/\beta)^w/i$ assuming q is decreasing in i.

Proof overview	Open problems	Thanks
0000000000		

Lemma (Bridging lemma)

 $(p(i))^2/q(1-\beta,i) \le Stab(\beta,i) \le (p(i))^{2/(1+\beta)}.$

So we get $p(i) \leq q(1-\beta,i)^{(1+\beta)/2\beta}$.

Lemma (Encoding lemma)

$$\sum_{i} q(1-\beta,i) = \mathbb{E}\left[\# \textit{useful}\left(L \upharpoonright_{\rho_{1-\beta}}\right) \right] \le (4/\beta)^w.$$

So we get $q(1-\beta,i) \leq (4/\beta)^w/i$ assuming q is decreasing in i.

Theorem (Final bound)

 $\varepsilon = \Pr[L(x) \neq L'(x)] \le \sum_{i>t} p(i) \le \sum_{i>t} [(4/\beta)^w/i]^{(1+\beta)/2\beta}.$

Then we choose $\beta = \beta(\varepsilon, w)$ to get optimal *t*.

Section 3

Open problems

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > < 0 Q (0 21/23)

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	○●	0

Assume L is a width-w DNF.

L' is constructed by removing rules of L, thus $L'(x) \leq L(x)$.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	○●	0

```
Assume L is a width-w DNF.
```

L' is constructed by removing rules of L, thus $L'(x) \leq L(x)$.

Now we want some DNF L'' such that $L''(x) \ge L(x)$.

Problem (Upper bound compression)

L can be ε -approximated by a width-w size-s DNF from above.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	○●	0

```
Assume L is a width-w DNF.
```

L' is constructed by removing rules of L, thus $L'(x) \leq L(x)$.

Now we want some DNF L'' such that $L''(x) \ge L(x)$.

Problem (Upper bound compression)

L can be ε -approximated by a width-w size-s DNF from above.

Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$.

Introduction	Proof overview	Open problems	Thanks
0000000	00000000000	○●	0

```
Assume L is a width-w DNF.
```

L' is constructed by removing rules of L, thus $L'(x) \leq L(x)$.

Now we want some DNF L'' such that $L''(x) \ge L(x)$.

Problem (Upper bound compression)

L can be ε -approximated by a width-w size-s DNF from above.

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$.
- Lovett, Solomon and Zhang 2019: in a restricted case, $s = ((\log w)/\varepsilon)^{O(w)}$ implies improved sunflower lemma.

```
Assume L is a width-w DNF.
```

L' is constructed by removing rules of L, thus $L'(x) \leq L(x)$.

Now we want some DNF L'' such that $L''(x) \ge L(x)$.

Problem (Upper bound compression)

L can be ε -approximated by a width-w size-s DNF from above.

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$.
- Lovett, Solomon and Zhang 2019: in a restricted case, $s = ((\log w)/\varepsilon)^{O(w)}$ implies improved sunflower lemma.

Alweiss, Lovett, Wu and Zhang [STOC, 2020] gives the improved sunflower lemma, can we improve upper bound compression?

Thanks!

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q (C 23/23