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Decision list (DL)

Decision list L = ((C1,v1), (C2,v2), ..., (Cm,vm)) is

If Ci(z) = True then output v,
else if Cy(x) = True then output vy,

else if C,,(z) = True then output vy,.
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Decision list L = ((C1,v1), (C2,v2), ..., (Cm,vm)) is

If Ci(z) = True then output v,
else if Cy(x) = True then output vy,

else if Cy,(z) = True then output vy,.

C}; is a conjunction of literals, e.g., 1 A "o A x4
The last rule is default: C,,, = True

Its size is the number of rules

Its width is the maximal number of literals in C;
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Decision list (DL)

Assume L = ((z1,1), (mx2 A z3,a), (x1 A 24,5),(1,3)). Then
m its size is 4;
m its width is 2.
If 1 = True then output 1,
else if —z5 A x3 = True then output a,

else if x1 A x4 = True then output 5,
else output 3.
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Decision list (DL)

Assume L = ((z1,1), (mx2 A z3,a), (x1 A 24,5),(1,3)). Then
m its size is 4;

m its width is 2.

If 1 = True then output 1,
else if —z5 A x3 = True then output a,
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else output 3.
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Decision list (DL)

Let L = ((C1,v1),...,(Cm,vm)) be some width-w DL.

m L generalizes width-w DNFs.
fvv=--=vp1=1Lv,=0,then L=CyV---VCp_1.
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Decision list (DL)

Let L = ((C1,v1),...,(Cm,vm)) be some width-w DL.

m L generalizes width-w DNFs.

fvv=--=vp1=1Lv,=0,then L=CyV---VCp_1.
m L generalizes width-w CNFs.
fvy=---=vp.1=0,v, =1,then L=-C1 A--- AN=Cp,_1.

m Actually L can be strictly more expressive than width-w
DNFs/CNFs.

5/23



Introduction
0000000

Main result

Small-width DLs can be approximated by small-size DLs of small width.
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Main result

Small-width DLs can be approximated by small-size DLs of small width.

Definition (e-approximation)

[ is e-approximated by g if Pr, (o 13n[f(2) # g(z)] < e.

Theorem (Decision list compression)

Any width-w DL can be e-approximated by a width-w size-s DL.

m Gopalan, Meka and Reingold 2013: s = (wlog(1/¢))°™) for
DNFs.

m Lovett and Zhang 2019: s = (1/¢)°(®).
m Now: s = pon(Qwa(l/a)) and this is tight.
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Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of
small width.
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Applications

Corollary (DNF sparsification)

Small-width DNFs can be approximated by small-size DNFs of
small width.

Corollary (Junta theorem)

Small-width DLs can be approximated by a function depending on
few input bits.
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Applications

Theorem (Jackson's harmonic sieve 1997)

Small-size DNFs are PAC learnable under the uniform distribution
with membership queries.

Corollary (Learning small-width DNFs)

Small-width DNFs are PAC learnable under the uniform
distribution with membership queries.
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More definitions

Let L = ((C1,v1),...,(Cm,vm)) be a DL.

Definition (Index function)

IndL(z) is the index of the first satisfied rule in L(x).

Definition (Useful index)

Index i is useful if there exists some x such that IndL(z) = i.
#useful (L) is the number of useful indices in L.

Example

Assume L = ((x1,v1), (1 A x2,v2), (1,v3)).
Then IndL(xz; = 1,29 = 1) = 1 and #useful (L) = 2.
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Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.
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Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (H&stad's switching lemma 1987)

Let f be a width-w DNF, oo € (0,1), and d be an integer.
If p randomly restricts each input bit to 0,1, * w.p.
(1-®)/2,(1—-a)/2,a, then

Pr[DT(f I,) > d] < (50w)".
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Step 1: randomness kills structure

We should be able to compress L (in some form) under restrictions.

Lemma (H&stad's switching lemma 1987)

Let f be a width-w DNF, oo € (0,1), and d be an integer.
If p randomly restricts each input bit to 0,1, * w.p.
(1-®)/2,(1—-a)/2,a, then

Pr[DT(f I,) > d] < (50w)".

m Meaningful only when oo < O(1/w) = most bits are fixed.
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Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.
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Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and o € (0,1).
If p randomly restricts each input bit to 0,1, * w.p.
(1-a)/2,(1 —a)/2,a, then

1l —«o

E [# useful (L r,,)]g< A )w.
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Step 1: mild randomness also kills structure

Let's directly analyze L's size under restrictions.

Lemma (Encoding lemma)

Let L be a width-w DL and o € (0,1).
If p randomly restricts each input bit to 0,1, * w.p.
(1-a)/2,(1 —a)/2,a, then

1l —«o

E [# useful (L r,,)]g< A )w.

m Meaningful for all kinds of «.

m Prove by encoding p together with a useful index in L [,.
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Step 2: compression — redundant rules

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m If index 7 is not useful, we can safely remove the i-th rule.
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Step 2: compression — redundant rules

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m If index 7 is not useful, we can safely remove the i-th rule.

If 1 = True then output v1,
else if 1 A 29 = True then output vo,
else output vs3.
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Step 2: compression — redundant rules

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m If index 7 is not useful, we can safely remove the i-th rule.

If 1 = True then output v1,
else if 1 A 29 = True then output vo,

else output vs3.

If 1 = True then output v1,

£ASG /W A I 7 TR AR OMEaMY/ 1.

else output vs.
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Step 2: compression — less useful rules

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m Let p(i) = Pry [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.
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Step 2: compression — less useful rules

Let L = ((C1,v1), - -, (Cm,vm)) be a width-w DL.

m Let p(i) = Pry [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.

If 21 Axo A--- A xy = True then output vy,
else if x1 = True then output v,
else output vs.

p(1) =27%,p(2) = 1/2,p(3) = 1/2.
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Step 2: compression — less useful rules

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m Let p(i) = Pry [IndL(x) = i], and sort it in descending order.
If p decays fast, we only need to keep the top few rules.

If 21 Axo A+ Axy = True then output vy,
else if x1 = True then output v,
else output vs.

\U/ lose e =27%

WA I8 T 77 e [ENe [

¢ls€ if 1 = True then output v,
else output vs.
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Step 2: compression — approximator

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.

m Assume p(i) = Pr, [IndL(z) = i] is decreasing in i for
simplicity.
m Let approximator L' = ((Cy,v1), ..., (Ct,vt), (Crm, vm))-
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Step 2: compression — approximator

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL.
m Assume p(i) = Pr, [IndL(z) = i] is decreasing in i for
simplicity.

m Let approximator L' = ((Cy,v1), ..., (Ct,vt), (Crm,vim)). Then
it has

m width w;
m sizet+1;
m approximation factor

e =Pr[L(z) # L'(z)] < Pr[IndL(z => pi

>t
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Now what?

Let p, be the random restriction with x-probability «.

m What we can do so far?
We can analyze (o, i) = Pr[index i is useful in L [,,], since

S glai) = B [fuseful (L 1,,)]
m What we want to do next?
We want to bound p(i) = Pr[IndL(z) = 1], since

e=Pr[L(z)# L (x ZP

>t
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Step 3: noise stability

Let's introduce noise stability to relate p(i) and g(a, ).

Definition (Noise distribution N3)

y ~ Np(z) is sampled by taking Prly; = z;] = (1 + 3)/2.

Then for x ~ {0,1}",y ~ N3(z), we can also do it by sampling
m 1. common restriction p = p;_g with x-probability 1 — £.
m 2. 2/ by uniformly filling out *'s in p, and set z = po 2.

m 3. / by uniformly filling out *'s in p, and set y = poy/.
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Step 4: bridging lemma

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL and
fix an index 1.
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Step 4: bridging lemma

Let L = ((C1,v1),...,(Cm,vm)) be a width-w DL and
fix an index 1.

Recall
m p(i) = Pr[IndL(x) = i;
m ¢(,i) = Prlindex i is useful in L [,,];

m our goal is to "bridge” between p(i) and gq(a, ).

Sample z = poa’ ~{0,1}",y = poy' ~Njs(z),p = p1_p and
define Stab(3,7) = Pr[IndL(x) = IndL(y) = 1].

Stab(/3,1) is the bridge.
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Step 4: bridging lemma

For upper bound, we have

Fact (Hypercontractivity)
Stab(B, ) < (Pr [IndL(z) = i) "7 = (p(a))/ (7).
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Step 4: bridging lemma

For upper bound, we have

Fact (Hypercontractivity)
Stab(B, ) < (Pr [IndL(z) = i) "7 = (p(a))/ (7).

For lower bound, we can prove
Stab(B,i) > (Pr[IndL(z) = i])?/ Pr[index i is useful in L | ,]
= (p(9))?/q(1 — B,1%).
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Step 5: putting everything together

Lemma (Bridging lemma)

(p(0))2/q(1 — B, i) < Stab(B,4) < (p(i))¥/A+5),
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Step 5: putting everything together

Lemma (Bridging lemma)
(p(8)2/q(1 = B, i) < Stab(B, i) < (p(i))%/A+5).,
So we get p(i) < q(1 — B,4)(1+5)/28

20/23



Proof overview

00000000000 e

Step 5: putting everything together

Lemma (Bridging lemma)
(p(8)2/q(1 = B, i) < Stab(B, i) < (p(i))%/A+5).,
So we get p(i) < q(1 — B,4)(1+5)/28

Lemma (Encoding lemma)

>:9(1—-B,i)=E [#useful(L [pl_ﬂ)] < (4/B)™.
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Step 5: putting everything together

Lemma (Bridging lemma)
(p(0))2/q(1 — B, i) < Stab(B,4) < (p(i))¥/A+5),

So we get p(i) < q(1 — B,4)(1+5)/28

Lemma (Encoding lemma)
> a(l— B,i) = E [#useful (L 1,,_,)] < (4/8)".

So we get q(1 — 3,1) < (4/5)" /i assuming g is decreasing in 1.

Theorem (Final bound)
e = Pr{L(z) # L'@)] € T (i) < Sinel (4/8) /1050,

Then we choose 5 = (e, w) to get optimal ¢.

20/23



Open problems
°0

Section 3

Open problems

21/23



Open problems
oe

Upper bound compression

Assume L is a width-w DNF.
L’ is constructed by removing rules of L, thus L'(z) < L(z).
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Upper bound compression
Assume L is a width-w DNF.
L’ is constructed by removing rules of L, thus L'(z) < L(z).

Now we want some DNF L” such that L”(z) > L(z).

Problem (Upper bound compression)

L can be e-approximated by a width-w size-s DNF from above.

m Gopalan, Meka and Reingold 2013: s = (wlog(1/e))°®).

m Lovett, Solomon and Zhang 2019: in a restricted case,
= ((logw)/£)°™) implies improved sunflower lemma.

Alwelss, Lovett, Wu and Zhang [STOC, 2020] gives the improved
sunflower lemma, can we improve upper bound compression?
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