DNF compression

Sunflower lemma

Open problems

Thanks 0

Randomness vs structure DNF compression and sunflower lemma

Kewen Wu Peking University

Joint works with

Ryan Alweiss Princeton

Shachar Lovett UCSD

Jiapeng Zhang Harvard

<ロト < 回 ト < 目 ト < 目 ト ミ の < () 1/25

Overview	DNF compression		Open problems	Thanks
•0	000 0000000	000 0000		

- This talk is about two recent works accepted by STOC 2020.
 - Decision list compression by mild random restrictions Shachar Lovett, Kewen Wu, Jiapeng Zhang
 - Improved bounds for the sunflower lemma
 Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang
- The main approach is to study *mild random restrictions*.

Small-width DNFs simplify under (mild) random restrictions.

verview	DNF compression		Open problems	Thanks
•	000 0000000	000 0000		

DNF (disjunctive normal form)

- Iiteral: x_i or $\neg x_i$
- term: a conjuction of literals
- DNF: a disjunction of terms
- width of a DNF: maximum number of literals in a term
- size of a DNF: number of conjunctions

Example

 $(x_1 \wedge x_2) \lor (\neg x_1 \wedge x_3 \wedge x_5)$ is a DNF of width 3 and size 2.

DNF compression

Sunflower lemma

Open problem

Thanks 0

Section 2

DNF compression

<ロト < 回 > < 直 > < 直 > < 直 > 三 の < ⊙ 4/25

Overview	DNF compression		Open problems	Thanks
	000 0000000	000 0000		

What we proved

Definition (ε -approximation)

 $f \text{ is } \varepsilon\text{-approximated by } g \text{ if } \mathrm{Pr}_{x \sim \{0,1\}^n}[f(x) \neq g(x)] \leq \varepsilon.$

Theorem (DNF compression)

Width-w DNF can be ε -approximated by a width-w size-s DNF.

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$.
- Lovett and Zhang 2019: $s = (1/\varepsilon)^{O(w)}$.
- Now: $s = \left(2 + \frac{1}{w} \log \frac{1}{\varepsilon}\right)^{O(w)}$ and this is tight.

Overview	DNF compression		Open problems	Thanks
	000	000 0000		

Applications

Decision list compression

Small-width decision lists can be approximated by decision lists of same width and small size.

If $C_1(x) =$ True then output v_1 ,

else if $C_{m-1}(x) =$ True then output v_{m-1} , else output default value v_m .

Junta theorem

Small-width DNFs can be approximated by DNFs of same width and few input bits.

Learning small-width DNFs
 Small-width DNFs are efficiently PAC learnable.

Overview 00	DNF compression ○○○ ●○○○○○○	Sunflower lemma 000 0000	Open problems 0000	Thanks 0
Proof overview				

How we proved – more definitions

Let $f = C_1 \lor \cdots \lor C_m$ be a DNF.

Definition (Index function Ind f)

 $\operatorname{Ind} f(x)$ is the index of first satisfied term (or \perp if f(x) = 0).

Definition (Useful index)

Index i is useful if there exists x such that Indf(x) = i. #useful (f) is the number of useful indices.

Example

Assume
$$f = (x_1 \land x_2) \lor (x_2) \lor (x_1 \land x_2 \land \neg x_3)$$
. Then $\operatorname{Ind} f(1,1,0) = 1$ and $\#$ useful $(f) = 2$.

Overview	
Proof overvie	w

DNF compression 000 0●00000 Sunflower lemma

イロト 不得 トイヨト イヨト 二日

How we proved - Step 1: randomness kills structure

We should be able to compress f (in some sense) under restrictions.

Lemma (Håstad's switching lemma 1987)

Let f be a width-w DNF, $\alpha \in (0, 1)$, and d be an integer. If ρ randomly restrict each input bit to 0, 1, * w.p. $(1 - \alpha)/2, (1 - \alpha)/2, \alpha$, then

$$\Pr_{\rho}\left[\operatorname{DecisionTree}(f\restriction_{\rho}) \geq d\right] \leq (5\alpha w)^d.$$

Prove by encoding bad ρ .

• Meaningful only when $\alpha \leq O(1/w) \implies$ most bits are fixed.

Overview 00	DNF compression ○○○ ○○●○○○○	Sunflower lemma 000 0000	Open problems 0000	Thanks 0
Proof overview				

Mild random restrictions

Let's directly analyze f's size under restrictions.

Lemma

Let f be a width-w DNF, $\alpha \in (0, 1)$, and s be an integer. If ρ randomly restrict each input bit to 0, 1, * w.p. $(1 - \alpha)/2, (1 - \alpha)/2, \alpha$, then

$$\Pr_{\rho}\left[\#\textit{useful}\left(f\restriction_{\rho}\right) \geq s\right] \leq \frac{1}{s} \left(\frac{4}{1-\alpha}\right)^{w}$$

Prove by encoding bad ρ, (ρ, i) → (ρ', aux).
 ρ' activates *'s in C_i ↾_ρ for useful i ⇒ Indf(ρ') = i.
 Meaningful for all kinds of α.

Overview 00	DNF compression	Sunflower lemma 000 0000	Open problems 0000	Thanks 0

How we proved - Step 2: intuition for compression

Let $f = C_1 \lor \cdots \lor C_m$ be a width-w DNF.

- If index i is not useful, we can safely remove C_i .
- Assume p_i = Pr_x [Ind f(x) = i] is decreasing in i.
 If p_i decrease quickly, we only need to keep the top ones.

• Let
$$g = C_1 \vee \cdots \vee C_t$$
. Then

$$\Pr\left[f(x) \neq g(x)\right] = \Pr\left[\mathsf{Ind}f(x) > t\right] = \sum_{i>t} p_i.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview 00	DNF compression ○○○ ○○○○●○○	Sunflower lemma 000 0000	Open problems 0000	Thanks 0
Proof overview				

Now what?

Let $f = C_1 \vee \cdots \vee C_m$ be a width-w DNF.

• What we can do so far? We can analyze $q_i(\alpha) = \Pr_{\rho} [\text{index } i \text{ is useful in } f \upharpoonright_{\rho}]$, since

$$\sum_i q_i(\alpha) = \mathop{\mathbb{E}}_{\rho} \left[\# \mathsf{useful} \left(f \restriction_{\rho} \right) \right].$$

What we want to do next?
 We want to bound p_i = Pr_x [Ind f(x) = i].

Overview 00	DNF compression ○○○ ○○○○○●○	Sunflower lemma 000 0000	Open problems 0000	Thanks O
Proof overview				

How we proved - Step 3: noise stability

Let's introduce noise stability.

Definition (Noise distribution \mathcal{N}_{β})

 $y \sim \mathcal{N}_{\beta}(x)$ is sampled by taking $\Pr[y_i = x_i] = (1 + \beta)/2$.

Then for $x \sim \{0,1\}^n, y \sim \mathcal{N}_\beta(x)$, we can also do it as

- **1** sample common restriction ρ with $\Pr[\rho_i = *] = 1 \beta$;
- **2** sample x' by uniformly filling out *'s in ρ , and set $x = \rho \circ x'$;
- **3** sample y' by uniformly filling out *'s in ρ , and set $y = \rho \circ y'$.

Overview 00	DNF compression ○○○ ○○○○○○●	Sunflower lemma 000 0000	Open problems 0000	Thanks 0
Proof overview				

How we proved - Step 4: bridging lemma

Let $f = C_1 \vee \cdots \vee C_m$ be a width-w DNF and fix i. Sample $x \sim \{0, 1\}^n, y \sim \mathcal{N}_\beta(x)$, which can be seen as ρ, x', y' .

Define $\operatorname{Stab}(\beta) = \Pr[\operatorname{Ind} f(x) = \operatorname{Ind} f(y) = i]$ and recall $p = \Pr[\operatorname{Ind} f(x) = i]$, $q = \Pr[\operatorname{index} i$ is useful in $f \upharpoonright_{\rho}]$.

Fact (Hypercontractivity)

$$\operatorname{Stab}(\beta) \leq (\Pr\left[\operatorname{Ind} f(x) = i\right])^{\frac{2}{1+\beta}} = p^{\frac{2}{1+\beta}}.$$

We also have

$$\begin{split} \mathsf{Stab}(\beta) &= \Pr\left[\mathsf{Ind}\,f(x) = \mathsf{Ind}\,f(y) = i, \mathsf{index}\,\,i\,\,\mathsf{is}\,\,\mathsf{useful}\,\,\mathsf{in}\,\,f\restriction\rho\right] \\ &= q\Pr\left[\mathsf{Ind}\,f(x) = \mathsf{Ind}\,f(y) = i\mid\,\mathsf{index}\,\,i\,\,\mathsf{is}\,\,\mathsf{useful}\,\,\mathsf{in}\,\,f\restriction\rho\right] \\ &\geq q\left(\Pr\left[\mathsf{Ind}\,f(x) = i\mid\,\mathsf{index}\,\,i\,\,\mathsf{is}\,\,\mathsf{useful}\,\,\mathsf{in}\,\,f\restriction\rho\right]\right)^2 \\ &= p^2/q. \end{split}$$

DNF compression

Sunflower lemma

Open problems

Thanks 0

Section 3

Sunflower lemma

<ロト < 回 > < 臣 > < 臣 > 三 の Q (C 14 / 25

Overview	DNF compression	Sunflower lemma	Open problems	Thanks
	000 0000000	000 0000		

What we proved

Definition (*w*-set system and *r*-sunflower)

A w-set system is a family of sets of size at most w. An r-sunflower is r sets with same pairwise intersection.

Theorem (Erdős-Rado sunflower lemma)

Any w-set system of size s has r-sunflower.

Let's focus on r = 3.

- Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.
- Kostochka 2000: $s \approx (w \log \log \log w / \log \log w)^w$.
- Fukuyama 2018: $s \approx w^{0.75w}$.
- Now: $s \approx (\log w)^w$ and this is tight for our approach.

verview	DNF compression	Sunflower lemma	Open problems	Thanks
	000 0000000	00 0 0000		

Applications

Combinatorics

- Intersecting set systems
- Erdős-Szemerédi sunflower lemma
- Alon-Jaeger-Tarsi conjecture
- Random graph
- Theoretical computer science
 - Circuit lower bounds and data structure lower bounds
 - Matrix multiplication
 - Pseudorandomness: DNF compression
 - Cryptography
 - Property testing
 - Fixed parameter complexity

Overview 00	DNF compression 000 0000000	Sunflower lemma ○○○ ●○○○	Open problems 0000	Thanks 0
D				

How we proved – Step 1: make it robust

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}$ is a *w*-set system. Define a width-*w* DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{j \in S_i} x_j$.

Definition (Satisfying system)

 \mathcal{F} is satisfying if $\Pr[f_{\mathcal{F}}(x) = 0] < 1/3$ with $\Pr[x_i = 1] = 1/3$, i.e., $\Pr[\forall i \in [m], S_i \not\subset S] < 1/3$ with $\Pr[x_i \in S] = 1/3$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets (3-sunflower).

Prove by randomly 3-coloring x and union bound.

Overview 00	DNF compression 000 0000000	Sunflower lemma ○○○ ○●○○	Open problems 0000	Thanks O
Proof overview				

How we proved – Step 2: induction

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a *w*-set system. Define link $\mathcal{F}_Y = \{S_i \setminus Y \mid Y \subset S_i\}$, which is a (w - |Y|)-set system.

If there exists Y such that $|\mathcal{F}_Y| \ge m/\kappa^{|Y|} > \kappa^{w-|Y|}$, then we can apply induction and find 3-sunflower in \mathcal{F}_Y .

So induction starts at such \mathcal{F} , that $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y. Thus it suffices to prove

Lemma

Let $\kappa \geq (\log w)^{O(1)}$. If $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, then \mathcal{F} is satisfying, which means there are 3 pairwise disjoint sets in \mathcal{F} .

Overview 00	DNF compression 000 0000000	Sunflower lemma ○○○ ○○●○	Open problems 0000	Thanks O
Proof overview				

How we proved – Step 3: randomness preserves structure

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a *w*-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \leftarrow \mathcal{F}$ is structured Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a w/2-(multi-)set system \mathcal{F}' from each S_i :

■ Good: If there exists $|S_j \setminus W| \le w/2$ and $S_j \setminus W \subset S_i \setminus W$, then put $S_j \setminus W$ into \mathcal{F}' ; (*j* may equal *i*) To satisfy $\{\{x_1, x_2\}, \{x_1, x_2, x_3, x_5\}, \{x_4\}\}$, it suffices to satisfy $\{\{x_1, x_2\}, \{x_1, x_2\}, \{x_4\}\}$.

Bad: otherwise, we do nothing for S_i .

Then $|\mathcal{F}'| \approx m$ and $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|, \forall Y. \leftarrow \mathcal{F}'$ is also structured Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, k, aux)$, where $S_j \setminus W \subset S_i \setminus W$ and S_i ranks $k < m/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$.

Overview 00	DNF compression 000 0000000	Sunflower lemma ○○○ ○○○●	Open problems 0000	Thanks O
Proof overview				

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y. Assume $\kappa = (\log w)^{O(1)}$. $\Pr[x_i \in S] = 1/3$

 \approx take $1/3\mbox{-}{\rm fraction}$ of the ground set as S

pprox view S as $W_1, W_2, \ldots, W_{\log w}$, each of $pprox 1/\sqrt{\kappa}$ -fraction

Then

$$\mathcal{F} \xrightarrow{W_1} \mathcal{F}' \xrightarrow{W_2} \mathcal{F}'' \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \mathcal{F}^{\mathsf{last}}$$

• either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$,

• or, $\mathcal{F}^{\mathsf{last}}$ is a width-0 (multi-)set system of size $\approx m > \kappa^w$ and still $|\mathcal{F}_Y^{\mathsf{last}}| \lessapprox |\mathcal{F}^{\mathsf{last}}| / \kappa^{|Y|}$ holds for any Y. impossible Thus, (informally) we proved such \mathcal{F} is satisfying, which means \mathcal{F} has 3-sunflower (3 pairwise disjoint sets).

DNF compression

Sunflower lemma

Open problems

Thanks 0

Section 4

Open problems

<ロト < 回 > < 言 > < 言 > こ き < こ > こ の < C 21 / 25

Overview	DNF compression		Open problems	Thanks
	000 0000000	000 0000	0000	

Problem 1 – Upper bound compression

Compressed DNF g is constructed by removing several terms from DNF f, thus $g(x) \leq f(x).$

Problem (Upper bound compression)

Width-w DNF can be ε -approximated by a width-w size-s DNF from above. $(g(x) \ge f(x))$

- Gopalan, Meka and Reingold 2013: $s = (w \log(1/\varepsilon))^{O(w)}$.
- Lovett, Solomon and Zhang 2019: restricted in monotone case, s = (log w/ε)^{O(w)} implies improved sunflower lemma. Now we have the improved sunflower lemma, can we do better?

Overview	DNF compression		Open problems	Thanks
	000 0000000	000 0000	0000	

Problem 2 – Erdős-Rado sunflower

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size $O_r(1)^w$ has r-sunflower.

- Our robust sunflower cannot overcome (log w)^{(1-o(1))w}.
 We need new ideas.
- Lift the sunflower size?

 $r=3\implies r=4$

• Is $(\log w)^{(1-o(1))w}$ actually tight? Counterexamples?

Overview	DNF compression		Open problems	Thanks
	000 0000000	000 0000	0000	

Problem 3 – Erdős-Szemerédi sunflower

Assume
$$\mathcal{F} = \{S_1, \ldots, S_m\}$$
 and $S_i \subset \{1, 2, \ldots, n\}$.

Problem (Erdős-Szemerédi sunflower conjecture)

There exists function $\varepsilon = \varepsilon(r) > 0$, such that, if $m > 2^{n(1-\varepsilon)}$, then \mathcal{F} has r-sunflower.

Now:

• general r: $\varepsilon = O_r (\log n)^{-(1+o(1))}$ from ER sunflower.

• r = 3: Naslund proved it using polynomial method.

• ER sunflower conjecture \implies ES sunflower conjecture.

DNF compression

Sunflower lemma

Open problem

Thanks •

Section 5

Thanks