Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000	000	0

Improved bounds for the sunflower lemma

$\begin{array}{l} {\sf Kewen} \ {\sf Wu} \\ {\sf Peking} \ {\sf U} \rightarrow {\sf UC} \ {\sf Berkeley} \end{array}$

Joint work with

Ryan Alweiss Princeton

Shachar Lovett UCSD

 $\begin{array}{l} \text{Jiapeng Zhang} \\ \text{Harvard} \rightarrow \text{USC} \end{array}$

Main result ●00	Applications	Proof overview 0000000	Open problems	Thanks 0
Definitions				

Definition (*w*-set system and *r*-sunflower)

A w-set system is a family of sets of size at most w.

Main result	Applications	Proof overview	Open problems	Thanks
•00				

Definitions

Definition (*w*-set system and *r*-sunflower)

A *w*-set system is a family of sets of size at most *w*. An *r*-sunflower is *r* sets S_1, \ldots, S_r where

- Kernel: $Y = S_1 \cap \cdots \cap S_r$;
- **Petals**: $S_1 \setminus Y, \ldots, S_r \setminus Y$ are pairwise disjoint.

Main result	Applications	Proof overview	Open problems	Thanks
•00				

Definitions

Definition (*w*-set system and *r*-sunflower)

A *w*-set system is a family of sets of size at most *w*. An *r*-sunflower is *r* sets S_1, \ldots, S_r where

- Kernel: $Y = S_1 \cap \cdots \cap S_r$;
- **Petals**: $S_1 \setminus Y, \ldots, S_r \setminus Y$ are pairwise disjoint.

Example

 $\left\{ \left\{ 1,2 \right\}, \left\{ 1,3,4,6 \right\}, \left\{ 1,5 \right\}, \left\{ 2,3 \right\} \right\} \text{ is a 4-set system of size } 4. \\ \text{It has a 3-sunflower } \left\{ \left\{ 1,2 \right\}, \left\{ 1,3,4,6 \right\}, \left\{ 1,5 \right\} \right\} \text{ with kernel } \left\{ 1 \right\} \\ \text{ and petals } \left\{ 2 \right\}, \left\{ 3,4,6 \right\}, \left\{ 5 \right\}. \\ \end{array}$

Main result	Applications	Proof overview	Open problems	Thanks
0●0	00	00000000		0

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Main result	Applications	Proof overview	Open problems	Thanks
0●0	00	00000000		0

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Main result	Applications	Proof overview	Open problems	Thanks
000				

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r = 3.

• Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.

Main result	Applications	Proof overview	Open problems	Thanks
000				

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

- Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.
- Kostochka 2000: $s \approx (w \log \log \log w / \log \log w)^w$.

Main result	Applications	Proof overview	Open problems	Thanks
000				

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

- Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.
- Kostochka 2000: $s \approx (w \log \log \log w / \log \log w)^w$.
- Fukuyama 2018: $s \approx w^{0.75w}$.

Main result	Applications	Proof overview	Open problems	Thanks
000				

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

- Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.
- Kostochka 2000: $s \approx (w \log \log \log w / \log \log w)^w$.
- Fukuyama 2018: $s \approx w^{0.75w}$.
- Now: $s \approx (\log w)^w$ and this is tight for our approach.

Main result	Applications	Proof overview	Open problems	Thanks
00●				

Actual bound and further refinement

Theorem (Improved sunflower lemma)

For some constant C, any w-set system of size s has an r-sunflower, where

$$s = \left(Cr^2 \cdot \left(\log w \log \log w + (\log r)^2\right)\right)^w$$

Main result	Applications	Proof overview	Open problems	Thanks
00●				

Actual bound and further refinement

Theorem (Improved sunflower lemma)

For some constant C, any w-set system of size s has an r-sunflower, where

$$s = \left(Cr^2 \cdot \left(\log w \log \log w + (\log r)^2\right)\right)^w$$

Recently, Anup Rao improved it to

$$s = (Cr(\log w + \log r)))^w.$$

Main result	Applications	Proof overview	Open problems	Thanks
	•0			

Applications – Theoretical computer science

- Circuit lower bounds
- Data structure lower bounds
- Matrix multiplication
- Pseudorandomness
- Cryptography
- Property testing
- Fixed parameter complexity
- Communication complexity

...

Main result	Applications	Proof overview	Open problems	Thanks
	00			

Applications – Combinatorics

- Erdős-Szemerédi sunflower lemma
- Intersecting set systems
- Packing Kneser graphs
- Alon-Jaeger-Tarsi nowhere-zero conjecture
- Thersholds in random graphs
- **...**

Main result	Applications	Proof overview	Open problems	Thanks
000	00	●0000000	000	0

Section 3

Proof overview

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (~ 7/18

Main result	Applications	Proof overview	Open problems	Thanks
000	00	o●oooooo	000	O
Make it ro	obust			

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}$ is a *w*-set system.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000		0

Make it robust

Assume $\mathcal{F} = \{S_1, \dots, S_m\}$ is a *w*-set system. Define a width-*w* DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{i \in S_i} x_i$.

Example

If $\mathcal{F} = \{\{1, 2\}, \{1, 3, 4, 6\}, \{1, 5\}, \{2, 3\}\}$, then $f_{\mathcal{F}} = (x_1 \wedge x_2) \lor (x_1 \wedge x_3 \wedge x_4 \wedge x_6) \lor (x_1 \wedge x_5) \lor (x_2 \wedge x_3).$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	o●oooooo	000	0

Make it robust

Assume $\mathcal{F} = \{S_1, \dots, S_m\}$ is a *w*-set system. Define a width-*w* DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{j \in S_i} x_j$.

Example

If $\mathcal{F} = \{\{1, 2\}, \{1, 3, 4, 6\}, \{1, 5\}, \{2, 3\}\}$, then $f_{\mathcal{F}} = (x_1 \wedge x_2) \lor (x_1 \wedge x_3 \wedge x_4 \wedge x_6) \lor (x_1 \wedge x_5) \lor (x_2 \wedge x_3).$

Definition (Satisfying system)

 ${\mathcal F}$ is satisfying if $\Pr\left[f_{{\mathcal F}}(x)=0
ight] < 1/3$ with $\Pr\left[x_i=1
ight]=1/3$,

Main result	Applications	Proof overview	Open problems	Thanks
000	00	o●oooooo	000	0

Make it robust

Assume $\mathcal{F} = \{S_1, \dots, S_m\}$ is a *w*-set system. Define a width-*w* DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{j \in S_i} x_j$.

Example

If $\mathcal{F} = \{\{1, 2\}, \{1, 3, 4, 6\}, \{1, 5\}, \{2, 3\}\}$, then $f_{\mathcal{F}} = (x_1 \wedge x_2) \lor (x_1 \wedge x_3 \wedge x_4 \wedge x_6) \lor (x_1 \wedge x_5) \lor (x_2 \wedge x_3).$

Definition (Satisfying system)

 \mathcal{F} is satisfying if $\Pr[f_{\mathcal{F}}(x) = 0] < 1/3$ with $\Pr[x_i = 1] = 1/3$, i.e., $\Pr[\forall i \in [m], S_i \notin S] < 1/3$ with $\Pr[x_i \in S] = 1/3$.

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Assume \mathcal{F} is a set system on ground set $\{1, \ldots, n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Assume \mathcal{F} is a set system on ground set $\{1, \ldots, n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

 $\boldsymbol{3}$ pairwise disjoint sets is a 3-sunflower with empty kernel.

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Assume \mathcal{F} is a set system on ground set $\{1, \ldots, n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

 $\boldsymbol{3}$ pairwise disjoint sets is a 3-sunflower with empty kernel.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty.

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Assume \mathcal{F} is a set system on ground set $\{1, \ldots, n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

 $\boldsymbol{3}$ pairwise disjoint sets is a 3-sunflower with empty kernel.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty. By definition, \mathcal{F} contains a purely red (green/blue) set w.p > 2/3.

000 00 000000 000	

Assume \mathcal{F} is a set system on ground set $\{1, \ldots, n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

 $\boldsymbol{3}$ pairwise disjoint sets is a 3-sunflower with empty kernel.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty. By definition, \mathcal{F} contains a purely red (green/blue) set w.p > 2/3. By union bound, \mathcal{F} contains one purely red set, one purely green set, and one purely blue set w.p > 0.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000		0

Structure vs pseudorandomness

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a *w*-set system. Define link $\mathcal{F}_Y = \{S_i \setminus Y \mid Y \subset S_i\}$, which is a (w - |Y|)-set system.

Example

If $\mathcal{F} = \{\{1,2\},\{1,3,4\},\{1,5\},\{2,3\}\}$, then $\mathcal{F}_{\{2\}} = \{\{1\},\{3\}\}$.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000	000	0

Structure vs pseudorandomness

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a *w*-set system. Define link $\mathcal{F}_Y = \{S_i \setminus Y \mid Y \subset S_i\}$, which is a (w - |Y|)-set system.

Example

If $\mathcal{F} = \{\{1,2\}, \{1,3,4\}, \{1,5\}, \{2,3\}\}$, then $\mathcal{F}_{\{2\}} = \{\{1\}, \{3\}\}$.

If there exists Y such that $|\mathcal{F}_Y| \ge m/\kappa^{|Y|} > \kappa^{w-|Y|}$, then we can apply induction and find an 3-sunflower in \mathcal{F}_Y .

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000	000	0

Structure vs pseudorandomness

Assume $\mathcal{F} = \{S_1, \ldots, S_m\}, m > \kappa^w$ is a *w*-set system. Define link $\mathcal{F}_Y = \{S_i \setminus Y \mid Y \subset S_i\}$, which is a (w - |Y|)-set system.

Example

If $\mathcal{F} = \{\{1,2\}, \{1,3,4\}, \{1,5\}, \{2,3\}\}$, then $\mathcal{F}_{\{2\}} = \{\{1\}, \{3\}\}$.

If there exists Y such that $|\mathcal{F}_Y| \ge m/\kappa^{|Y|} > \kappa^{w-|Y|}$, then we can apply induction and find an 3-sunflower in \mathcal{F}_Y .

So induction starts at such \mathcal{F} , that $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y.

Lemma

Let $\kappa \geq (\log w)^{O(1)}$. If $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, then \mathcal{F} is satisfying, which means \mathcal{F} has 3 pairwise disjoint sets.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000●000		0

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000000	000	0

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \leftarrow \mathcal{F}$ is pseudorandom

000 000 000 000 000	Main result	Applications	Proof overview	Open problems	Thanks
			0000000		

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \leftarrow \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a *w*/2-(multi-)set system \mathcal{F}' from each S_i :

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \leftarrow \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as *W*, and construct a *w*/2-(multi-)set system \mathcal{F}' from each S_i :

Good: If there exists $|S_j \setminus W| \le w/2$ and $S_j \setminus W \subset S_i \setminus W$, then put $S_j \setminus W$ into \mathcal{F}' ; (j may equal i)

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Let
$$\mathcal{F} = \{S_1, \ldots, S_m\}$$
 be a w -(multi-)set system.
Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \leftarrow \mathcal{F}$ is pseudorandom
Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W ,
and construct a $w/2$ -(multi-)set system \mathcal{F}' from each S_i :

■ Good: If there exists $|S_j \setminus W| \le w/2$ and $S_j \setminus W \subset S_i \setminus W$, then put $S_j \setminus W$ into \mathcal{F}' ; (*j* may equal *i*) E.g., $S_j \setminus W = \{1\}, S_i \setminus W = \{1, 2, 3, 4, 5\}.$

Main result	Applications	Proof overview	Open problems	Thanks
		0000000		

Let
$$\mathcal{F} = \{S_1, \ldots, S_m\}$$
 be a w -(multi-)set system.
Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \Leftarrow \mathcal{F}$ is pseudorandom
Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W ,
and construct a $w/2$ -(multi-)set system \mathcal{F}' from each S_i :

- Good: If there exists $|S_j \setminus W| \le w/2$ and $S_j \setminus W \subset S_i \setminus W$, then put $S_j \setminus W$ into \mathcal{F}' ; (j may equal i)E.g., $S_j \setminus W = \{1\}, S_i \setminus W = \{1, 2, 3, 4, 5\}.$
- **Bad**: otherwise, we do nothing for S_i .

Example

If
$$\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3, 4\}, \{4, 5, 6, 7\}\}$$
 and $w = 4, W = \{1\}$, then $\mathcal{F}' = \{\{1, 2\}, \{1, 3\}, \{2, 3, 4\}, \{4, 5, 6, 7\}\}.$

Main result	Applications	Proof overview	Open problems	Thanks
000		00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\leftarrow \mathcal{F}'$ is also pseudorandom

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

•
$$W' = W \cup S_i = \{1, 4, 5, 6, 7\}$$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

 $\blacksquare \ W' = W \cup S_i = \{1,4,5,6,7\} \qquad \text{we find } j = 3 \text{ with } S_j \subset W'$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

 $\blacksquare \ W' = W \cup S_i = \{1, 4, 5, 6, 7\} \qquad \text{we find } j = 3 \text{ with } S_j \subset W'$

• $aux_1 = *$ \$\$ with at least w/2 \$s

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

• $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_j \subset W'$

• $aux_1 = *$ with at least w/2 s we know $S_j \cap S_i = \{4, 5, 6\}$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

• $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_j \subset W'$ • $aux_1 = *\$\$\$$ with at least w/2 \$s we know $S_j \cap S_i = \{4, 5, 6\}$ • k = 2

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

- $\bullet \ W' = W \cup S_i = \{1,4,5,6,7\} \qquad \text{we find } j = 3 \text{ with } S_j \subset W'$
- $aux_1 = *$ with at least w/2 s we know $S_j \cap S_i = \{4, 5, 6\}$
- k=2 S_i ranks 2 in $\mathcal{F}_{\{4,5,6\}}$, we recover i=4

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

 $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_j \subset W'$ $aux_1 = *\$\$\$ \text{ with at least } w/2 \$ \text{ we know } S_j \cap S_i = \{4, 5, 6\}$ k = 2 $S_i \text{ ranks } 2 \text{ in } \mathcal{F}_{\{4,5,6\}}, \text{ we recover } i = 4$ $aux_2 = \$\$\$\$$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000●00	000	0

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, \operatorname{aux}_1, k, \operatorname{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \setminus W \subset S_i \setminus W$.

Example

 $\mathcal{F}' = \{\{1,2\}, \{2,3,4\}, \{1,4,5,6\}, \{4,5,6,7\}\}, W = \{1\}, i = 4.$ Encode/decode bad pair (W, i):

Main result 000	Applications 00	Proof overview 000000●0	Open problems 000	Thanks 0
Reductions				

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system on $\{1, \ldots, n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any *Y*, and $\kappa \approx (\log w)^2$.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	00000000	000	0

Reductions

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system on $\{1, \ldots, n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any *Y*, and $\kappa \approx (\log w)^2$. It suffices to prove

• \mathcal{F} is satisfying

 \iff w.h.p S covers some set of \mathcal{F} , where $\Pr[x_i \in S] = 1/3$.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	000000●0	000	0

Reductions

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system on $\{1, \ldots, n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any *Y*, and $\kappa \approx (\log w)^2$. It suffices to prove

• \mathcal{F} is satisfying

 \iff w.h.p S covers some set of \mathcal{F} , where $\Pr[x_i \in S] = 1/3$.

Split S into several parts,

• $\Pr[x_i \in S] = 1/3$ \approx take 1/3-fraction of the ground set as S \approx view S as $W_1, W_2, \dots, W_{\log w}$, each of $\approx 1/\sqrt{\kappa}$ -fraction

Main result	Applications	Proof overview	Open problems	Thanks
000	00	000000●0	000	0

Reductions

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a *w*-(multi-)set system on $\{1, \ldots, n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any *Y*, and $\kappa \approx (\log w)^2$. It suffices to prove

• \mathcal{F} is satisfying

 \iff w.h.p S covers some set of \mathcal{F} , where $\Pr[x_i \in S] = 1/3$.

Split S into several parts,

•
$$\Pr[x_i \in S] = 1/3$$

 $\approx \text{take } 1/3\text{-fraction of the ground set as } S$
 $\approx \text{view } S \text{ as } W_1, W_2, \dots, W_{\log w}\text{, each of } \approx 1/\sqrt{\kappa}\text{-fraction}$
Then we iteratively apply (pseudorandom-preserving) reductions,

$$\mathcal{F} \xrightarrow{W_1} \mathcal{F}' \xrightarrow{W_2} \mathcal{F}'' \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \mathcal{F}^{\mathsf{last}}.$$

Main result 000	Applications 00	Proof overview 0000000●	Open problems	Thanks O
Final step				
		· ·		

Main result 000	Applications	Proof overview 0000000●	Open problems 000	Thanks 0
Final step				

Main result	Applications	Proof overview	Open problems	Thanks
000	00	oooooooo	000	0
Final step				

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000●	000	O
Final step				

Main result	Applications	Proof overview	Open problems	Thanks
000	00	ooooooo●	000	O
Final step				

• either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$, $\Rightarrow S$ contains some set of \mathcal{F}

Main result 000	Applications 00	Proof overview 0000000●	Open problems 000	Thanks 0

Final step

- either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$, $\Rightarrow S$ contains some set of \mathcal{F}
- or we don't stop. Then, $\mathcal{F}^{\text{last}}$ is a width-0 (multi-)set system of size $\approx m > \kappa^w$, and $|\mathcal{F}_Y^{\text{last}}| \lesssim |\mathcal{F}^{\text{last}}| / \kappa^{|Y|}$ still holds for any Y. \Rightarrow Impossible

Main result 000	Applications 00	Proof overview 0000000●	Open problems 000	Thanks 0

Final step

Recall $S = W_1 \cup \cdots \cup W_{\log w}$ and

• either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$, $\Rightarrow S$ contains some set of \mathcal{F}

• or we don't stop.
Then,
$$\mathcal{F}^{\text{last}}$$
 is a width-0 (multi-)set system of size $\approx m > \kappa^w$,
and $|\mathcal{F}_Y^{\text{last}}| \leq |\mathcal{F}^{\text{last}}| / \kappa^{|Y|}$ still holds for any Y .
 \Rightarrow Impossible

Thus, (informally) we proved such \mathcal{F} is satisfying, which means \mathcal{F} has an 3-sunflower (3 pairwise disjoint sets).

Main result	Applications	Proof overview	Open problems	Thanks
000		00000000	●00	0

Section 4

Open problems

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (~ 15/18

Main result	Applications	Proof overview	Open problems	Thanks
000		00000000	000	

Erdős-Rado sunflower

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size $O_r(1)^w$ has an r-sunflower.

Main result 000	Applications	Proof overview 00000000	Open problems	Thanks 0

Erdős-Rado sunflower

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size $O_r(1)^w$ has an r-sunflower.

• Our approach cannot go beyond $(\log w)^{(1-o(1))w}$.

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000	000	

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size $O_r(1)^w$ has an r-sunflower.

- Our approach cannot go beyond $(\log w)^{(1-o(1))w}$.
- Lift the sunflower size?

$$r = 3 \implies r = 4.$$

Main result	Applications	Proof overview	Open problems	Thanks
000	00	0000000	000	

Problem (Erdős-Rado sunflower conjecture)

Any *w*-set system of size $O_r(1)^w$ has an *r*-sunflower.

- Our approach cannot go beyond $(\log w)^{(1-o(1))w}$.
- Lift the sunflower size?

$$r=3 \implies r=4.$$

• Is $(\log w)^{(1-o(1))w}$ actually tight? Counterexamples?

Main result	Applications	Proof overview	Open problems	Thanks
			000	

Erdős-Szemerédi sunflower

Assume
$$\mathcal{F} = \{S_1, \ldots, S_m\}$$
 and $S_i \subset \{1, 2, \ldots, n\}$.

Problem (Erdős-Szemerédi sunflower conjecture)

There exists function $\varepsilon = \varepsilon(r) > 0$, such that, if $m > 2^{n(1-\varepsilon)}$, then \mathcal{F} has an r-sunflower.

Main result	Applications	Proof overview	Open problems	Thanks
			000	

Erdős-Szemerédi sunflower

Assume
$$\mathcal{F} = \{S_1, ..., S_m\}$$
 and $S_i \subset \{1, 2, ..., n\}$.

Problem (Erdős-Szemerédi sunflower conjecture)

There exists function $\varepsilon = \varepsilon(r) > 0$, such that, if $m > 2^{n(1-\varepsilon)}$, then \mathcal{F} has an r-sunflower.

• ER sunflower conjecture \implies ES sunflower conjecture.

Now:

- general r: $\varepsilon = O_r (1/\log n)$ from ER sunflower.
- r = 3: Naslund proved it using polynomial method.

Main result	Applications	Proof overview	Open problems	Thanks

Section 5

Thanks

<ロト <回ト <国ト < 国ト < 国ト < 国ト < 国 > 3 へ () 18/18