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Definitions

Definition (w-set system and r-sunflower)

A w-set system is a family of sets of size at most w.

An r-sunflower is r sets S1, . . . , Sr where

Kernel: Y = S1 ∩ · · · ∩ Sr;

Petals: S1 \ Y, . . . , Sr \ Y are pairwise disjoint.

Example

{{1, 2} , {1, 3, 4, 6} , {1, 5} , {2, 3}} is a 4-set system of size 4.
It has a 3-sunflower {{1, 2} , {1, 3, 4, 6} , {1, 5}} with kernel {1}
and petals {2} , {3, 4, 6} , {5}.
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Main result

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let’s focus on r = 3.

Erdős and Rado 1960: s = w! · 2w ≈ ww.

Kostochka 2000: s ≈ (w log log logw/ log logw)w.

Fukuyama 2018: s ≈ w0.75w.

Now: s ≈ (logw)w and this is tight for our approach.
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Actual bound and further refinement

Theorem (Improved sunflower lemma)

For some constant C, any w-set system of size s has an
r-sunflower, where

s =
(
Cr2 ·

(
logw log logw + (log r)2

))w
.

Recently, Anup Rao improved it to

s = (Cr(logw + log r)))w .
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Applications – Theoretical computer science

Circuit lower bounds

Data structure lower bounds

Matrix multiplication

Pseudorandomness

Cryptography

Property testing

Fixed parameter complexity

Communication complexity

...
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Applications – Combinatorics

Erdős-Szemerédi sunflower lemma

Intersecting set systems

Packing Kneser graphs

Alon-Jaeger-Tarsi nowhere-zero conjecture

Thersholds in random graphs

...
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Section 3

Proof overview
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Make it robust

Assume F = {S1, . . . , Sm} is a w-set system.

Define a width-w DNF fF as fF =
∨m

i=1

∧
j∈Si

xj .

Example

If F = {{1, 2} , {1, 3, 4, 6} , {1, 5} , {2, 3}}, then
fF = (x1 ∧ x2) ∨ (x1 ∧ x3 ∧ x4 ∧ x6) ∨ (x1 ∧ x5) ∨ (x2 ∧ x3).

Definition (Satisfying system)

F is satisfying if Pr [fF (x) = 0] < 1/3 with Pr [xi = 1] = 1/3,
i.e., Pr [∀i ∈ [m], Si 6⊂ S] < 1/3 with Pr [xi ∈ S] = 1/3.
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Satisfyingness implies sunflower

Assume F is a set system on ground set {1, . . . , n}.

Lemma

If F is satisfying, then it has 3 pairwise disjoint sets.

3 pairwise disjoint sets is a 3-sunflower with empty kernel.

Proof.

Color x1, . . . , xn to red, green, blue uniformly and independenty.
By definition, F contains a purely red (green/blue) set w.p > 2/3.
By union bound, F contains one purely red set, one purely green
set, and one purely blue set w.p > 0.
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Structure vs pseudorandomness

Assume F = {S1, . . . , Sm} ,m > κw is a w-set system. Define link
FY = {Si\Y | Y ⊂ Si}, which is a (w − |Y |)-set system.

Example

If F = {{1, 2} , {1, 3, 4} , {1, 5} , {2, 3}}, then F{2} = {{1} , {3}}.

If there exists Y such that |FY | ≥ m/κ|Y | > κw−|Y |, then we can
apply induction and find an 3-sunflower in FY .

So induction starts at such F , that |FY |<m/κ|Y | holds for any Y .

Lemma

Let κ ≥ (logw)O(1). If |FY | < m/κ|Y | holds for any Y , then F is
satisfying, which means F has 3 pairwise disjoint sets.
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Randomness preserves pseudorandomness

Let F = {S1, . . . , Sm} be a w-(multi-)set system.

Assume |FY | < m/κ|Y | holds for any Y . ⇐ F is pseudorandom
Take ≈ 1/

√
κ-fraction of the ground set as W ,

and construct a w/2-(multi-)set system F ′ from each Si:

Good: If there exists |Sj\W | ≤ w/2 and Sj\W ⊂ Si\W ,
then put Sj\W into F ′; (j may equal i)
E.g., Sj\W = {1} , Si\W = {1, 2, 3, 4, 5}.
Bad: otherwise, we do nothing for Si.

Example

If F = {{1, 2} , {1, 3} , {2, 3, 4} , {4, 5, 6, 7}} and w = 4,W = {1},
then F ′ = {{1,2} , {1,3} , {2, 3, 4} , {4, 5, 6, 7}}.
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One reduction step

Then |F ′Y | ≤ |FY | and |F ′|≈|F|. ⇐ F ′ is also pseudorandom

Prove by encoding bad (W, i)→ (W ′ =W ∪ Si, aux1, k, aux2),
where Si ranks k < |F|/κw/2 in FSj∩Si for the first j ≤ i that
Sj\W ⊂ Si\W .

Example

F ′ = {{1,2} , {2, 3, 4} , {1, 4, 5, 6}, {4, 5, 6, 7}} ,W = {1} , i = 4.
Encode/decode bad pair (W, i):

W ′ =W ∪ Si = {1, 4, 5, 6, 7} we find j = 3 with Sj ⊂W ′

aux1 = ∗$$$ with at least w/2 $s we know Sj ∩ Si = {4, 5, 6}
k = 2 Si ranks 2 in F{4,5,6}, we recover i = 4

aux2 = $$$$ we recover W =W ′\ {4, 5, 6, 7}

12 / 18
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Reductions

Let F = {S1, . . . , Sm} be a w-(multi-)set system on {1, . . . , n}.
Assume |FY | < m/κ|Y | holds for any Y , and κ ≈ (logw)2.

It suffices to prove

F is satisfying
⇐⇒ w.h.p S covers some set of F , where Pr [xi ∈ S] = 1/3.

Split S into several parts,

Pr [xi ∈ S] = 1/3
≈ take 1/3-fraction of the ground set as S
≈ view S as W1,W2, . . . ,Wlogw, each of ≈ 1/

√
κ-fraction

Then we iteratively apply (pseudorandom-preserving) reductions,

F W1−−→ F ′ W2−−→ F ′′ W3−−→ · · ·
Wlogw−−−−→ F last.
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Final step

Recall S =W1 ∪ · · · ∪Wlogw and

F︸︷︷︸
width-w

W1−−→ F ′︸︷︷︸
width-w/2

W2−−→ F ′′︸︷︷︸
width-w/4

W3−−→ · · ·
Wlogw−−−−→ F last︸︷︷︸

width-0

.

either we stop at Wi when some set is contained in
⋃

j<iWj ,
⇒ S contains some set of F
or we don’t stop.
Then, F last is a width-0 (multi-)set system of size ≈ m > κw,
and

∣∣F last
Y

∣∣ / ∣∣F last
∣∣ /κ|Y | still holds for any Y .

⇒ Impossible

Thus, (informally) we proved such F is satisfying, which means F
has an 3-sunflower (3 pairwise disjoint sets).
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Section 4

Open problems
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Erdős-Rado sunflower

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size Or(1)
w has an r-sunflower.

Our approach cannot go beyond (logw)(1−o(1))w.

Lift the sunflower size?
r = 3 =⇒ r = 4.

Is (logw)(1−o(1))w actually tight? Counterexamples?
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Erdős-Szemerédi sunflower

Assume F = {S1, . . . , Sm} and Si ⊂ {1, 2. . . . , n}.

Problem (Erdős-Szemerédi sunflower conjecture)

There exists function ε = ε(r) > 0, such that, if m > 2n(1−ε), then
F has an r-sunflower.

ER sunflower conjecture =⇒ ES sunflower conjecture.

Now:

general r: ε = Or (1/ log n) from ER sunflower.
r = 3: Naslund proved it using polynomial method.
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Section 5

Thanks
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