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Definition (w-set system and r-sunflower)

A w-set system is a family of sets of size at most w.
An r-sunflower is r sets S, ...,.S, where

m Kernel: Y =5n---N5,;
m Petals: S;\Y,..., S, \Y are pairwise disjoint.

Example

{{1,2},{1,3,4,6},{1,5},{2,3}} is a 4-set system of size 4.
It has a 3-sunflower {{1,2},{1,3,4,6},{1,5}} with kernel {1}
and petals {2},{3,4,6},{5}.

2/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)

Any w-set system of size s has an r-sunflower.

3/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r = 3.

3/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r = 3.
m Erdés and Rado 1960: s = w! - 2% ~ w".

3/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r = 3.
m Erdés and Rado 1960: s = w! - 2% ~ w".

m Kostochka 2000: s = (wlogloglogw/ loglogw)™.

3/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)
Any w-set system of size s has an r-sunflower.
Let's focus on r = 3.

m Erdés and Rado 1960: s = w! - 2% ~ w".

m Kostochka 2000: s = (wlogloglogw/ loglogw)™.

m Fukuyama 2018: s =~ w% 7%,

3/18



Main result
o] 1o}

Main result

Theorem (Erdés-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r = 3.
m Erdds and Rado 1960: s = w! - 2% =~ w".
m Kostochka 2000: s = (wlogloglogw/ loglogw)™.
m Fukuyama 2018: s =~ w% 7%,

m Now: s =~ (logw)™ and this is tight for our approach.
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For some constant C', any w-set system of size s has an
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Main result

ooe

Actual bound and further refinement

Theorem (Improved sunflower lemma)

For some constant C', any w-set system of size s has an
r-sunflower, where

s = (Cr?- (logwloglogw + (logr)?))" .

Recently, Anup Rao improved it to

s = (Cr(logw +logr)))" .
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Applications
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Applications — Theoretical computer science

Circuit lower bounds

Data structure lower bounds
Matrix multiplication
Pseudorandomness
Cryptography

Property testing

Fixed parameter complexity

Communication complexity
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Applications
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Applications — Combinatorics

Erdés-Szemerédi sunflower lemma
Intersecting set systems

Packing Kneser graphs

Alon-Jaeger-Tarsi nowhere-zero conjecture

Thersholds in random graphs
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Assume F = {S1,...,Sn} is a w-set system.
Define a width-w DNF fr as fr = VL, Ajcs, 75-

Example

If F={{1,2},{1,3,4,6},{1,5},{2,3}}, then
fr=(@iAz)V(xr Axs Axg Axg) V(1 Axs) V (z2 A 3).

Definition (Satisfying system)

F is satisfying if Pr[fr(z) = 0] < 1/3 with Pr[z; = 1] =1/3,
i.e., Pr[Vie [m],S; ¢ S] <1/3 with Pr[z; € S] =1/3.
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Proof overview
[e]e] lele]e]ele)

Satisfyingness implies sunflower

Assume F is a set system on ground set {1,...,n}.

Lemma

If F is satisfying, then it has 3 pairwise disjoint sets.

3 pairwise disjoint sets is a 3-sunflower with empty kernel.

Proof.

Color z1,...,x, to red, green, blue uniformly and independenty.
By definition, F contains a purely red (green/blue) set w.p > 2/3.
By union bound, F contains one purely red set, one purely green
set, and one purely blue set w.p > 0. O
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Structure vs pseudorandomness

Assume F = {S1,...,Sn},m > k" is a w-set system. Define link
Fy ={S\Y | Y C S;}, which is a (w — |Y])-set system.
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Structure vs pseudorandomness

Assume F = {S1,...,Sn},m > k" is a w-set system. Define link
Fy ={S\Y | Y C S;}, which is a (w — |Y])-set system.

Example

If 7= {{1,2},{1,3,4},{1,5},{2,3}}, then Fyoy = {{1},{3}}.

If there exists Y such that |Fy| > m/klYl > =¥l  then we can
apply induction and find an 3-sunflower in Fy.

So induction starts at such F, that [Fy|<m/k!Y| holds for any Y.
Lemma

Let k > (logw)°M. If | Fy| < m/kl¥| holds for any Y, then F is
satisfying, which means F has 3 pairwise disjoint sets.
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Randomness preserves pseudorandomness

Let F = {S1,...,Sm} be a w-(multi-)set system.
Assume |Fy| < m/l¥! holds for any Y. < F is pseudorandom
Take ~ 1/4/k-fraction of the ground set as W,
and construct a w/2-(multi-)set system F’ from each S;:
m Good: If there exists |S;\W| < w/2 and S;\W C S;\W,
then put S;\W into F’; (j may equal i)
E.g., S;\W = {1},5,\W = {1,2,3,4,5}.

m Bad: otherwise, we do nothing for .S;.

Example

If F = {{1,2},{1,3},{2,3,4} ,{4,5,6,7}} and w = 4, W = {1},
then 7' = {{1,2},{1.3},{2,3,4},{4,5.6,7}}.
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Then |Fy | < |Fy| and |F'|=|F|. <= F'is also pseudorandom
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One reduction step

Then |Fy | < |Fy| and |F'|=|F|. <= F'is also pseudorandom
Prove by encoding bad (W, i) — (W' = W U S;, auxy, k, auxz),
where S; ranks k < |F|/k"/? in Fg,nsg, for the first j < i that
Sj\W C Si\W.

Example

F = {{1,2},{2,3,4},{1,4,5,6},{4,5,6,7}}, W = {1} ,i = 4.

Encode/decode bad pair (W, 4):
m W =WUS,={1,4,5,6,7} we find j = 3 with S; C W’
m aux; = *$$$ with at least w/2 $s we know S; N S; = {4,5,6}
mk=2 Si ranks 2 in Fiy56), we recover i =4
m auxo = $$$$ we recover W = W'\ {4,5,6,7}
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Reductions

Let F = {S1,...,Sn} be a w-(multi-)set system on {1,...,n}.
Assume | Fy| < m/k!Y! holds for any Y, and & ~ (logw)>2.
It suffices to prove
m F is satisfying
<= w.h.p S covers some set of F, where Pr[z; € S] =1/3.

Split S into several parts,
mPriz; €S]=1/3
~ take 1/3-fraction of the ground set as S
~ view S as Wi, Wa, ..., Wiggw, each of = 1/y/k-fraction

Then we iteratively apply (pseudorandom-preserving) reductions,

Wlog w

W W W.
F oy o ey o s \]_—Iast'
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Final step

Recall S =W U---UWg, and

W W W Wi
F 1 F 2 F By ... low, ]_-Iast .
~~ ~—~
width-w width-w/2 width-w/4 W|dth 0
m either we stop at W; when some set is contained in (J;_; W,

= S contains some set of F

m or we don't stop.
Then, F'3s is a width-0 (multi-)set system of size ~ m > K",
and |FPst| < |7t /&Y still holds for any Y.
= Impossible
Thus, (informally) we proved such F is satisfying, which means F
has an 3-sunflower (3 pairwise disjoint sets).

14/18



Open problems
©00

Section 4

Open problems

15/18



Open problems
0e0

Erdos-Rado sunflower

Problem (Erdés-Rado sunflower conjecture)

Any w-set system of size O,(1)" has an r-sunflower.

16/18



Open problems
0e0

Erdos-Rado sunflower

Problem (Erdés-Rado sunflower conjecture)

Any w-set system of size O,(1)" has an r-sunflower.

m Our approach cannot go beyond (logw)—e()w.

16/18



Open problems
0e0

Erdos-Rado sunflower

Problem (Erdés-Rado sunflower conjecture)

Any w-set system of size O,(1)" has an r-sunflower.

m Our approach cannot go beyond (logw)—e()w.

m Lift the sunflower size?
r=3 — r=4.

16/18



Open problems

oeo

Erdos-Rado sunflower

Problem (Erdés-Rado sunflower conjecture)

Any w-set system of size O,(1)" has an r-sunflower.

m Our approach cannot go beyond (logw)—e()w.

m Lift the sunflower size?
r=3 — r=4.

m Is (logw)(1=°M)® actually tight? Counterexamples?
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Erdos-Szemerédi sunflower

Assume F = {S1,...,Sn} and S; C {1,2....,n}.

Problem (Erd8s-Szemerédi sunflower conjecture)

There exists function € = (r) > 0, such that, if m > 2"(1=%)  then
F has an r-sunflower.

m ER sunflower conjecture = ES sunflower conjecture.
= Now:

m general r: ¢ = O, (1/logn) from ER sunflower.
m r = 3: Naslund proved it using polynomial method.
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