No exponential quantum speedup for SIS^{∞} anymore

Kewen Wu (IAS)

Robin Kothari Google Quantum Al

Ryan O'Donnell CMU

Outline

Toy example: \mathbf{F}_3^n -Subset-Sum Motivations

Main problem: the SIS^{∞} problem Cryptographic motivation

Full generalization: the **A**-SIS problem Quantum motivation

Algorithm overview

A toy SIS[∞] problem

Given vectors in ${f F}_3^n$, efficiently find a nonempty subset of them that sums to zero

 $\mathbf{F_3}^n$ -Subset-Sum

A toy SIS^{∞} problem

Given vectors in ${\bf F}_3^n$, efficiently find a nonempty subset of them that sums to zero

 $\mathbf{F_3}^n$ -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot

Condition: $\sum_{i \in S} v_i \equiv \vec{0} \mod 3$ or no such S

A toy SIS^{∞} problem

Given vectors in ${\bf F}_3^n$, efficiently find a nonempty subset of them that sums to zero

 $\mathbf{F_3}^n$ -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$

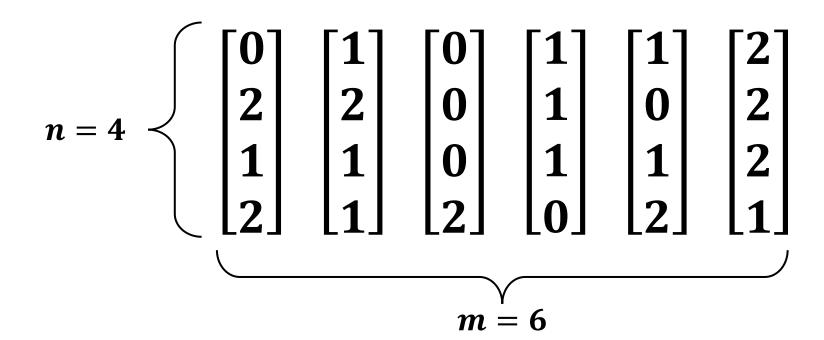
Output: $\emptyset \neq S \subseteq [m]$ or \bot

Condition: $\sum_{i \in S} v_i \equiv \vec{0} \mod 3$ or no such S

Only allow **0**, **1** as coefficients **2** is not allowed

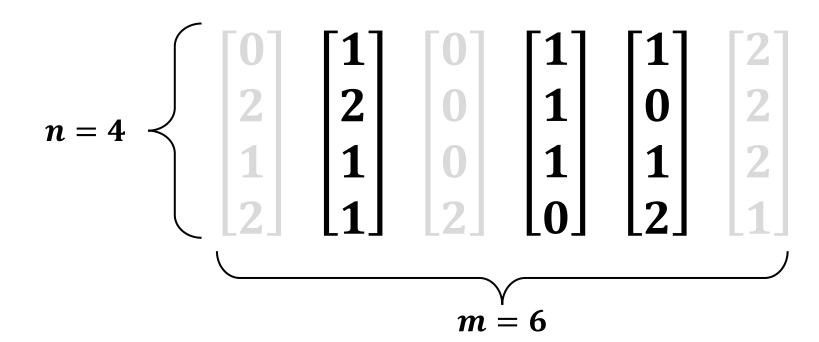
Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$



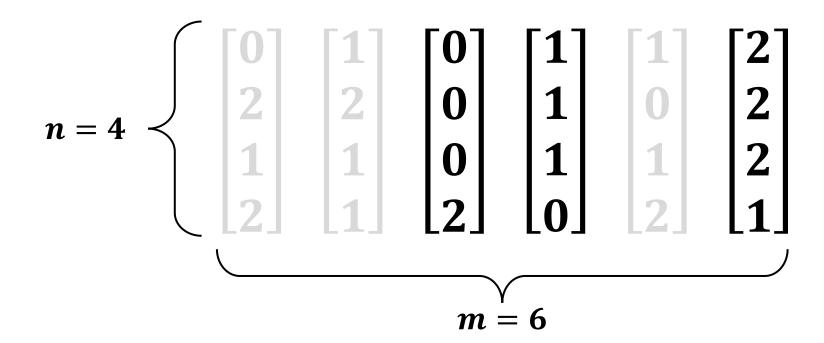
Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$



Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$



Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$

Harder

Easier

m

Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \mod 3$

Harder

Easier

n

m

NP-hard

```
Input: v_1, \dots, v_m \in \mathbb{F}_3^n
```

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$

(no ⊥)

Harder Easier **2***n* n **Total-Search NP-hard**

Input: $v_1, \dots, v_m \in \mathbb{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$

Harder Easier

$$n + \sqrt{n}$$

2*n*

NP-hard

Learning-With-Error (Arora-Ge'11)

Total-Search

(no ⊥)

Input: $v_1, \dots, v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \mod 3$

Input: $v_1, \dots, v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \mod 3$

Input: v_1 , ..., $v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$

(Ivanyos-Sanselma-Santha'07)

Input: $v_1, \dots, v_m \in \mathbb{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \bmod 3$

Harder Easier

 $n^2/2$ $n^2/3$ $n + \sqrt{n}$ **2***n*

Learning-**NP-hard**

With-Error (Arora-Ge'11)

Total-Search (no ⊥)

Classical polytime (new)

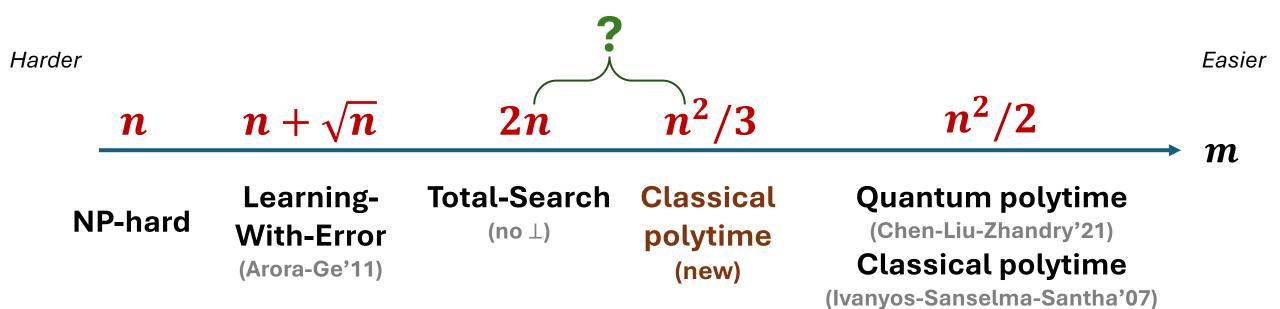
Quantum polytime (Chen-Liu-Zhandry'21) Classical polytime

m

(Ivanyos-Sanselma-Santha'07)

Input: $v_1, \dots, v_m \in \mathbf{F}_3^n$

Output: $\emptyset \neq S \subseteq [m]$ or \bot such that $\sum_{i \in S} v_i \equiv \overrightarrow{0} \mod 3$



Natural problem with many perspectives

Natural problem with many perspectives Complexity theory: subset-sum and LIN-SAT

Natural problem with many perspectives Complexity theory: subset-sum and LIN-SAT Discrepancy theory: vector balancing over **F**₃

Natural problem with many perspectives

Complexity theory: subset-sum and LIN-SAT

Discrepancy theory: vector balancing over F_3

Coding theory: ternary syndrome decoding with maximal weight

Natural problem with many perspectives

Complexity theory: subset-sum and LIN-SAT

Discrepancy theory: vector balancing over F_3

Coding theory: ternary syndrome decoding with maximal weight

Cryptography: Learning-With-Error with binary error over F_3

Natural problem with many perspectives

Complexity theory: subset-sum and LIN-SAT

Discrepancy theory: vector balancing over F_3

Coding theory: ternary syndrome decoding with maximal weight

Cryptography: Learning-With-Error with binary error over F_3

Security of post-quantum signature scheme

Wave (Debris-Alazard, Sendrier, Tillich'19)

CRYSTALS-Dilithium (Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehle'18)

Natural problem with many perspectives

Complexity theory: subset-sum and LIN-SAT

Discrepancy theory: vector balancing over F₃

Coding theory: ternary syndrome decoding with maximal weight

Cryptography: Learning-With-Error with binary error over F_3

Security of post-quantum signature scheme

Wave (Debris-Alazard, Sendrier, Tillich'19)

CRYSTALS-Dilithium (Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehle'18)

Quantum advantage

Natural problem with many perspectives

Complexity theory: subset-sum and LIN-SAT

Discrepancy theory: vector balancing over F₃

Coding theory: ternary syndrome decoding with maximal weight

Cryptography: Learning-With-Error with binary error over F_3

Security of post-quantum signature scheme

Wave (Debris-Alazard, Sendrier, Tillich'19)

CRYSTALS-Dilithium (Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehle'18)

Quantum advantage

Warmup for the SIS^{∞} problem

Input: $v_1, \dots, v_m \in \mathbb{F}_p^n$

Output: $c_1, ..., c_m$ such that

where p is a prime

$$\sum c_i v_i \equiv \overrightarrow{0} \bmod p$$

Input: $v_1, \dots, v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Short-Integer-Solution

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where \boldsymbol{p} is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$ Short-Integer-Solution

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

 $|c_i| \leq h$ and $\sum c_i v_i \equiv 0 \mod p$ Short-Integer-Solution

Example.

Given m vectors in \mathbf{F}_{101}^n , find linear dependence where all coeffs c_i are between ± 5 .

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Remark.

• p = 2 or 3: trivial

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- p=2 or 3: trivial
- $h \ge |p/2|$: trivial

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- p=2 or 3: trivial
- $h \ge |p/2|$: trivial
- Smaller h is a harder problem

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- p=2 or 3: trivial
- $h \ge |p/2|$: trivial
- Smaller h is a harder problem
- h = 1, allowing coeffs $\{-1, 0, +1\}$: Collision in linear hash

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Remark.

- p=2 or 3: trivial
- $h \ge |p/2|$: trivial
- Smaller h is a harder problem
- h = 1, allowing coeffs $\{-1, 0, +1\}$: Collision in linear hash

 $V \in \mathbf{F}_p^{n imes m}$ defines a linear hash $x \in \{\mathbf{0}, \mathbf{1}\}^m \ o \ Vx \in \mathbf{F}_p^n$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Remark.

- p = 2 or 3: trivial
- $h \ge |p/2|$: trivial
- Smaller h is a harder problem
- h = 1, allowing coeffs $\{-1, 0, +1\}$: Collision in linear hash

 $V \in \mathbb{F}_p^{n \times m}$ defines a linear hash $x \in \{0,1\}^m \to Vx \in \mathbb{F}_p^n$ Vx = Vx' iff V(x-x') = 0 iff Vc = 0

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Remark.

- p=2 or 3: trivial
- $h \ge |p/2|$: trivial
- Smaller h is a harder problem
- h = 1, allowing coeffs $\{-1, 0, +1\}$: Collision in linear hash

• $m \ge (p-1)n+1$: solution always exists

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Cryptography motivation.

• Our focus: $m\gg n$, many solutions exist, find one

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Cryptography motivation.

• Our focus: $m\gg n^2$, many solutions exist, find one

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- Our focus: $m\gg n^2$, many solutions exist, find one
- Learning-With-Error setting: $m=n+n^{1/\mathcal{C}}$, a (unique) solution *planted* , find it

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- Our focus: $m\gg n^2$, many solutions exist, find one
- Learning-With-Error setting: $m=n+n^{1/\mathcal{C}}$, a (unique) solution *planted* , find it
- CRYSTALS-Dilithium signature scheme: in its *module* variant Assume n=1280, m=2304, $p\approx 2^{23}$, $h\approx p/8$, random $\{v_i\}$ is hard

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

- Our focus: $m\gg n^2$, many solutions exist, find one
- Learning-With-Error setting: $m=n+n^{1/C}$, a (unique) solution *planted*, find it
- CRYSTALS-Dilithium signature scheme: in its module variant Assume $n=1280, m=2304, p\approx 2^{23}, h\approx p/8$, random $\{v_i\}$ is hard In general, assume $m\approx 1.9n, p\gg n, h\approx p/8$, random $\{v_i\}$ is hard

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Cryptography motivation.

- Our focus: $m\gg n^2$, many solutions exist, find one
- Learning-With-Error setting: $m=n+n^{1/C}$, a (unique) solution *planted*, find it
- CRYSTALS-Dilithium signature scheme: in its *module* variant Assume $n=1280, m=2304, p\approx 2^{23}, h\approx p/8$, random $\{v_i\}$ is hard In general, assume $m\approx 1.9n, p\gg n, h\approx p/8$, random $\{v_i\}$ is hard

 $m pprox n \log n, p pprox n^2 \log n, h = O(1)$, random $\{v_i\}$ is hard, based on worst-case hardness of lattice problems [Ajtai'96, Micciancio-Regev'04]

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: c_1 , ..., c_m such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume k is odd constant and

$$m\gg p^4n^k$$

Quantum polytime algorithm for

$$h \ge \frac{p-k}{2}$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume k is odd constant and

$$m\gg p^4n^k$$

Quantum polytime algorithm for

$$h \ge \frac{p-k}{2}$$

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k \log k} n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume k is odd constant and

$$m\gg p^4n^k$$

Quantum polytime algorithm for

$$h \geq \frac{p-k}{2}$$

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k \log k} n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Theorem (New).

Assume k is any constant and

$$m \gg n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume k is odd constant and

$$m\gg p^4n^k$$

Quantum polytime algorithm for

$$h \geq \frac{p-k}{2}$$

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k \log k} n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Theorem (New).

Assume k is any constant and

$$m \gg n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Runs in poly(n, log p) time

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $h \geq 1$ where p is a prime

Output: $c_1, ..., c_m$ such that each $|c_i| \leq h$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume k is odd constant and

$$m\gg p^4n^k$$

Quantum polytime algorithm for

$$h \geq \frac{p-k}{2}$$

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k \log k} n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Theorem (New).

Assume k is any constant and

$$m \gg n^k$$

Classical polytime algorithm for

$$h \geq \frac{p}{2k}$$

Runs in poly(n, log p) time Allows p = exp(poly(n))

Input: $v_1, ..., v_m \in \mathbb{F}_p^n$

Output: $c_1, ..., c_m$ such that

where p is a prime

 $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: c_1 , ..., c_m such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Example.

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: c_1 , ..., c_m such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Example.

• $A = \{-h, -h + 1, ..., h - 1, h\}$ for SIS^{∞}

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: c_1 , ..., c_m such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Example.

- $A = \{-h, -h + 1, ..., h 1, h\}$ for SIS^{∞}
- $A = \{0, 1\}$ for F_p^n -Subset-Sum

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Example.

- $A = \{-h, -h + 1, ..., h 1, h\}$ for SIS^{∞}
- $A = \{0, 1\}$ for F_p^n -Subset-Sum
- $A = \{-1, 0, 1\}$ for Collision-Finding

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} mod p$

Example.

- $A = \{-h, -h + 1, ..., h 1, h\}$ for SIS^{∞}
- $A = \{0, 1\}$ for F_p^n -Subset-Sum
- $A = \{-1, 0, 1\}$ for Collision-Finding

If $\mathbf{0} \not\in A$ and $v_1 = v_2 = \cdots = v_{m-1} = \overrightarrow{\mathbf{0}}$ and $v_m \neq \overrightarrow{\mathbf{0}}$, then it has no solution

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Example.

- $A = \{-h, -h + 1, ..., h 1, h\}$ for SIS^{∞}
- $A = \{0, 1\}$ for F_p^n -Subset-Sum
- $A = \{-1, 0, 1\}$ for Collision-Finding

If $\mathbf{0} \not\in A$ and $v_1 = v_2 = \cdots = v_{m-1} = \overrightarrow{\mathbf{0}}$ and $v_m \neq \overrightarrow{\mathbf{0}}$, then it has no solution

Input: random $v_1, ..., v_m \in \mathbb{F}_p^n$ and $A \subseteq \mathbb{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \leq k \leq p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \leq k \leq p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \le k \le p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

k = p: only one coeff is allowed

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \leq k \leq p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

 $m{k} = m{p}$: only one coeff is allowed

Theorem (New).

Under the same $|A| \geq p - k + 1$ condition Classical polytime algorithm only needs

$$m{m}\gg m{\log(p)}\cdot igg\{$$

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: c_1 , ..., c_m such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \le k \le p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

k=p: only one coeff is allowed

Theorem (New).

Under the same $|A| \geq p - k + 1$ condition Classical polytime algorithm only needs

$$m\gg \log(p)\cdot egin{cases} n^2 \ \end{array}$$

if
$$p>4^{k-1}$$

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \le k \le p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

 $m{k} = m{p}$: only one coeff is allowed

Theorem (New).

Under the same $|A| \ge p - k + 1$ condition Classical polytime algorithm only needs

$$m\gg \log(p)\cdot egin{cases} n^2 \\ n^{k-1} \end{cases}$$

$$\text{if } p > 4^{k-1}$$

$$\text{if } p \geq 7 \text{ and } k \geq 3$$

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \leq k \leq p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

 $m{k} = m{p}$: only one coeff is allowed

Theorem (New).

Under the same $|A| \geq p-k+1$ condition Classical polytime algorithm only needs

$$m\gg \log(p)\cdot egin{cases} n^2 & ext{if } p>4^{k-1} \ n^{k-1} & ext{if } p\geq 7 ext{ and } k\geq 3 \ n^k & ext{in general for all } p\geq 3 ext{ and } k\geq 2 \end{cases}$$

Input: random $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \leq k \leq p-1$ is a constant and $m \gg p^4 n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

A full dequantization!

 $m{k} = m{p}$: only one coeff is allowed

Theorem (New).

Under the same $|A| \ge p - k + 1$ condition Classical polytime algorithm only needs

$$m\gg \log(p)\cdot egin{cases} n^2 & ext{if } p>4^{k-1} \ n^{k-1} & ext{if } p\geq 7 ext{ and } k\geq 3 \ n^k & ext{in general for all } p\geq 3 ext{ and } k\geq 2 \end{cases}$$

Input: random v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where \boldsymbol{p} is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Theorem (Chen-Liu-Zhandry'21).

Assume $2 \le k \le p-1$ is a constant and $m\gg p^4n^k$

Quantum polytime algorithm for $|A| \geq p - k + 1$

k = 1: every coeff is allowed

k = p: only one coeff is allowed

Theorem (New).

Under the same $|A| \ge p - k \pm 1$ condition A full dequantization!

Classical polytime algorithm Why is this dequantization interesting?

$$m\gg \log(p)\cdot egin{cases} n^2 & ext{if } p>4^{k-1} \ n^{k-1} & ext{if } p\geq 7 ext{ and } k\geq 3 \ n^k & ext{in general for all } p\geq 3 ext{ and } k\geq 2 \end{cases}$$

Find problems where quantum algorithms have exponential speedup over classical ones

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Candidate problem based on Regev's reduction (Regev'05)

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Candidate problem based on Regev's reduction (Regev'05)

Chen-Liu-Zhandry'21

On quantum speedup

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Candidate problem based on Regev's reduction (Regev'05)

Chen-Liu-Zhandry'21

Yamakawa-Zhandry'22

On quantum speedup

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Candidate problem based on Regev's reduction (Regev'05)

Chen-Liu-Zhandry'21

Yamakawa-Zhandry'22

(DQI team) Jordan, Shutty, Wootters, Zalcman, Schmidhuber, King, Isakov, Khattar, Babbush'24

Chailloux-Tillich'24

On quantum speedup

Find problems where quantum algorithms have exponential speedup over classical ones

Simulation of quantum systems

Hidden subgroup problem (factoring, discrete log)

Candidate problem based on Regev's reduction (Regev'05)

Chen-Liu-Zhandry'21

Yamakawa-Zhandry'22

(DQI team) Jordan, Shutty, Wootters, Zalcman, Schmidhuber, King, Isakov, Khattar, Babbush'24

Chailloux-Tillich'24

Captured by A-SIS

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Yamakawa-Zhandry'22

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ **A** arbitrary Yamakawa-Zhandry'22

Input: $v_1, ..., v_m \in \mathbb{F}_p^n$ and $A \subseteq \mathbb{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Yamakawa-Zhandry'22

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} mod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random

Input: $v_1, ..., v_m \in \mathbb{F}_p^n$ and $A \subseteq \mathbb{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p = 4n |A| = p/2 m = 4n

Input: $v_1, ..., v_m \in \mathbb{F}_p^n$ and $A \subseteq \mathbb{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p = 4n |A| = p/2 m = 4n

Input: $v_1, ..., v_m \in \mathbb{F}_p^n$ and $A \subseteq \mathbb{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Classically hard in the query model

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p = 4n |A| = p/2 m = 4n

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$ where p is a prime

Output: $c_1, ..., c_m$ such that each $c_i \in A$ and $\sum c_i v_i \equiv \overrightarrow{0} \bmod p$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Classically hard in the query model

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p=4n |A|=p/2 m=4n

Why?

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Classically hard in the query model

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p=4n |A|=p/2 m=4n

Why?

We can handle worst-case $\{v_i\}$, exponential p, and A of large size

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Classically hard in the query model

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p=4n |A|=p/2 m=4n

Why?

We can handle worst-case $\{v_i\}$, exponential p, and A of large size But we cannot handle $m \ll n^2$

Chen-Liu-Zhandry'21

Random $\{v_i\}$ A arbitrary p = poly(n) |A| = p - k + 1 $m \approx n^k$

Now classically easy

Yamakawa-Zhandry'22

 $\{v_i\}$ folded RS code A random $p = \exp(n \log n)$ |A| = p/2 $m \approx 6n$

Classically hard in the query model

DQI'24, Chailloux-Tillich'24

 $\{v_i\}$ RS code A random p = 4n |A| = p/2 m = 4n

Why?

Now classically easy

We can handle worst-case $\{v_i\}$, exponential p, and A of large size But we cannot handle $m \ll n^2$

classically hard

Chen-Liu-Zhandry'21	Yamakawa-Zhandry'22	DQI'24, Chailloux-Tillich'24
Random $\{oldsymbol{v_i}\}$	$\{oldsymbol{v_i}\}$ folded RS code	$\{\boldsymbol{v_i}\}$ RS code
A arbitrary	A random	$m{A}$ random
p = poly(n)	$p = \exp(n \log n)$	p = 4n
A = p - k + 1	A = p/2	A = p/2
$m \approx n^k$	$m \approx 6n$	m=4n
Nlavy alagaigally again	Classically hard	Still seems

in the query model

Outline

Toy example: \mathbf{F}_3^n -Subset-Sum Motivations

Main problem: the SIS^{∞} problem Cryptographic motivation

Full generalization: the **A**-SIS problem Quantum motivation

Algorithm overview

Algorithm overview

Fⁿ₃-Subset-Sum Reducible vector

The SIS[∞] problem
Weight reduction

The A-SIS problem
General reduction

Input: $v_1, \dots, v_m \in \mathbb{F}_3^n$ where $m \approx n^2/3$

Output: a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

$$n^2 \rightarrow n^2/2 \rightarrow n^2/3$$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2/3$

Output: a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

Input: $v_1, \dots, v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$
 $v_1^{(2)}, \dots, v_{n+1}^{(2)}$

$$v_1^{(2)}, \dots, v_{n+1}^{(2)}$$

$$v_1^{(n+1)}, \dots, v_{n+1}^{(n+1)}$$

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors Compute linear dependence in each batch

$\mathbf{F_3}^n$ -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors Compute linear dependence in each batch

$$\sum_i \alpha_i v_i^{(1)} = \vec{0}$$
 where $\alpha_i \in \{0, 1, -1\}$ not all- 0

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors Compute linear dependence in each batch

$$\sum_i \alpha_i v_i^{(1)} = \overrightarrow{\mathbf{0}}$$
 where $\alpha_i \in \{\mathbf{0}, \mathbf{1}, -\mathbf{1}\}$ not all- $\mathbf{0}$

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$
 Define $u^{(1)} = \sum_{i:\alpha_i=1} v_i^{(1)}$ and $w^{(1)} = \sum_{i:\alpha_i=-1} v_i^{(1)}$

F_3^n -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors Compute linear dependence in each batch

$$\sum_i \alpha_i v_i^{(1)} = \overrightarrow{\mathbf{0}}$$
 where $\alpha_i \in \{\mathbf{0}, \mathbf{1}, -\mathbf{1}\}$ not all- $\mathbf{0}$

Define
$$m{u^{(1)}} = \sum_{i: m{lpha_i} = 1} m{v_i^{(1)}}$$
 and $m{w^{(1)}} = \sum_{i: m{lpha_i} = -1} m{v_i^{(1)}}$

Then $u^{(1)} = w^{(1)}$ are disjoint subset-sum in this batch

$$v_1^{(1)}$$
 , ... , $v_{n+1}^{(1)}$

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n + 1 batches of n + 1 vectors Compute 2 disjoint subset-sums that are equal in each batch

$$\sum_i \alpha_i v_i^{(1)} = \overrightarrow{\mathbf{0}}$$
 where $\alpha_i \in \{\mathbf{0}, \mathbf{1}, -\mathbf{1}\}$ not all- $\mathbf{0}$

Define
$$oldsymbol{u^{(1)}} = \sum_{i:lpha_i=1} v_i^{(1)}$$
 and $oldsymbol{w^{(1)}} = \sum_{i:lpha_i=-1} v_i^{(1)}$

Then $u^{(1)} = w^{(1)}$ are disjoint subset-sum in this batch

$$v_1^{(1)}$$
, ..., $v_{n+1}^{(1)}$

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n + 1 batches of n + 1 vectors Compute 2 disjoint subset-sums that are equal in each batch

$$\sum_i \alpha_i v_i^{(1)} = \overrightarrow{\mathbf{0}}$$
 where $\alpha_i \in \{\mathbf{0}, \mathbf{1}, -\mathbf{1}\}$ not all- $\mathbf{0}$

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$
 Define $u^{(1)} = \sum_{i:\alpha_i=1} v_i^{(1)}$ and $w^{(1)} = \sum_{i:\alpha_i=-1} v_i^{(1)}$

Then $u^{(1)} = w^{(1)}$ are disjoint subset-sum in this batch

If
$$\mathbf{u}^{(1)} = \mathbf{w}^{(1)} = \overrightarrow{\mathbf{0}}$$
, we are done

Input: $v_1, \dots, v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\hat{\mathbf{0}}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums that are equal in each batch

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$

$$u^{(1)} = w^{(1)}$$

$$v_1^{(1)}, \dots, v_{n+1}^{(1)}$$
 $v_1^{(2)}, \dots, v_{n+1}^{(2)}$

$$u^{(2)} = w^{(2)}$$

$$v_1^{(n+1)}, \dots, v_{n+1}^{(n+1)}$$

$$u^{(n+1)} = w^{(n+1)}$$

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch

F_3^n -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$\mathbf{F_3}^n$ -Subset-Sum

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$$eta_i = \left\{ egin{array}{c} 0 \\ 1 \\ 2 \end{array}
ight.$$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$$oldsymbol{eta}_i = \left\{egin{array}{l} \mathbf{0} & oldsymbol{eta}_i \mathbf{u}^{(i)} = \overrightarrow{\mathbf{0}} ext{ is a trivial subset-sum} \ \mathbf{1} & \mathbf{2} \end{array}
ight.$$

F_3^n -Subset-Sum

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$$eta_i = \left\{ egin{array}{ll} 0 & eta_i u^{(i)} = \overrightarrow{0} ext{ is a trivial subset-sum} \ 1 & eta_i u^{(i)} = u^{(i)} ext{ is a subset-sum} \ 2 & \end{array}
ight.$$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$$\beta_i = \begin{cases} 0 & \beta_i u^{(i)} = \vec{0} \text{ is a trivial subset-sum} \\ 1 & \beta_i u^{(i)} = u^{(i)} \text{ is a subset-sum} \\ 2 & \beta_i u^{(i)} = 2u^{(i)} = u^{(i)} + w^{(i)} \text{ is a subset-sum} \end{cases}$$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m = (n+1)^2 \approx n^2$

Output: a nontrivial subset that sums to $\vec{0}$

Partition m input vectors into n+1 batches of n+1 vectors

Compute 2 disjoint subset-sums $u^{(i)} = w^{(i)}$ in each batch Compute linear dependence of the subset-sums

$$\beta_1 u^{(1)} + \beta_2 u^{(2)} + \dots + \beta_{n+1} u^{(n+1)} = \vec{0}$$
 where $\beta_i \in \{0, 1, 2\}$ not all- 0

$$\beta_i = \begin{cases} 0 & \beta_i u^{(i)} = \vec{0} \text{ is a trivial subset-sum} \\ 1 & \beta_i u^{(i)} = u^{(i)} \text{ is a subset-sum} \\ 2 & \beta_i u^{(i)} = 2u^{(i)} = u^{(i)} + w^{(i)} \text{ is a subset-sum} \end{cases}$$

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \rightarrow n^2/2$

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2$

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2$

$$v_1, \ldots, v_{n+1}$$

$$v_{n+2}, v_{n+3}, \dots, v_m$$

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2$

$$v_1, \ldots, v_{n+1}$$

$$u = w$$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

$$v_{n+2}$$
, v_{n+3} , ..., v_m

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \rightarrow n^2/2$

$$v_1, \dots, v_{n+1}$$

$$u = w$$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

$$v_{n+2}, v_{n+3}, \dots, v_m$$

$$oldsymbol{v_j} = oldsymbol{c_j} u + oldsymbol{v_j}'$$
 where

- $v_j' \in u^{\perp}$ (complement space of u)
- $c_i = 0, 1, 2$

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \rightarrow n^2/2$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1, \dots, v_{n+1}$$

$$u = w$$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

$$v_{n+2}, v_{n+3}, \dots, v_m$$

$$oldsymbol{v_j} = oldsymbol{c_j} u + oldsymbol{v_j}'$$
 where

- $v_j' \in u^\perp$ (complement space of u)
- $c_i = 0, 1, 2$

A subset sums to $\overrightarrow{\mathbf{0}}$ in \boldsymbol{u}^{\perp} is a multiple of \boldsymbol{u} in the whole space

Dimension reduction

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1, \ldots, v_{n+1}$$

$$u = w$$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

$$v_{n+2}, v_{n+3}, \dots, v_m$$

$$oldsymbol{v_j} = oldsymbol{c_j} u + oldsymbol{v_j}'$$
 where

- $v_j' \in u^\perp$ (complement space of u)
- $c_i = 0, 1, 2$

A subset sums to $\overrightarrow{\mathbf{0}}$ in \boldsymbol{u}^{\perp} is a multiple of \boldsymbol{u} in the whole space

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \rightarrow n^2/2$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1$$
, ..., v_{n+1}

$$u = w$$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

$$v_{n+2}, v_{n+3}, \dots, v_m$$

$$oldsymbol{v_j} = oldsymbol{c_j} oldsymbol{u} + oldsymbol{v_j}'$$
 where

- $v_j' \in u^\perp$ (complement space of u)
- $c_i = 0, 1, 2$

One dimension smaller

A subset sums to $\overrightarrow{\mathbf{0}}$ in \boldsymbol{u}^\perp is a multiple of \boldsymbol{u} in the whole space

Dimension reduction

Input: v_1 , ..., $v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2$

Output: a nontrivial subset that sums to $\vec{0}$

 $v_1, ..., v_{n+1}$ $v_{n+2}, v_{n+3}, ..., v_m$ n+1 #vectors needed for dim n-1

#vectors needed for dim *n*

Dimension reduction

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \rightarrow n^2/2$

Output: a nontrivial subset that sums * 0

 $v_1,...,v_{n+1}$ $v_{n+2},v_{n+3},...,v_m$ n+1 #vectors needed for dim n-1

#vectors needed for dim n

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1,\dots,v_{n+1}$$

$$u = w$$

 $\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$ is a subset-sum

 $1 \cdot u = u$ is a subset-sum

 $2 \cdot u = u + w$ is a subset-sum

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1, \ldots, v_{n+1}$$

$$u = w$$

 $\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$ is a subset-sum

 $1 \cdot u = u$ is a subset-sum

 $2 \cdot u = u + w$ is a subset-sum

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

F_3^n -Subset-Sum

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1, \dots, v_{n+1}$$

$$u = w$$

 $\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$ is a subset-sum

 $1 \cdot u = u$ is a subset-sum

 $2 \cdot u = u + w$ is a subset-sum

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Fact.

Reducible vector u exists with |T| = n + 1

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

$$v_1, \dots, v_{n+1}$$

$$u = w$$

 $\mathbf{0} \cdot \mathbf{u} = \vec{\mathbf{0}}$ is a subset-sum

 $1 \cdot u = u$ is a subset-sum

 $2 \cdot u = u + w$ is a subset-sum

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Fact.

Reducible vector u exists with |T| = n + 1

Claim.

Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

Claim.

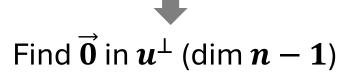
Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

Claim.

$$v_1, \dots, v_m$$

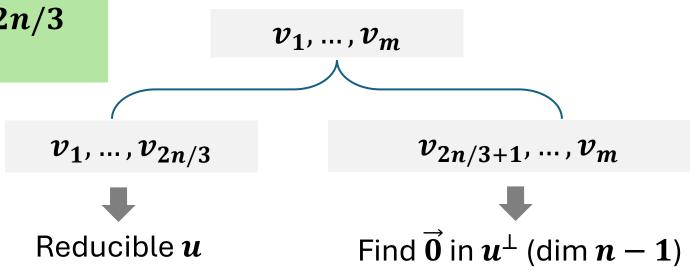


Explore sparsity

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

Claim.



Explore sparsity

 v_1, \ldots, v_m

Input: $v_1, ..., v_m \in \mathbb{F}_3^n$ where $m \approx n^2 \to n^2/2 \to n^2/3$

Output: a nontrivial subset that sums to $\vec{0}$

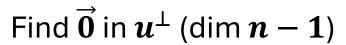
Claim.

$$\frac{n^2}{3} = \frac{n^2}{2} \cdot \frac{2}{3}$$

$$v_1, \ldots, v_{2n/3}$$

Reducible
$$oldsymbol{u}$$

$$v_{2n/3+1}, \ldots, v_m$$



Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Reducible vector u exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

Claim.

$$\sum_{i \in T} \alpha_i v_i = \overrightarrow{0}$$
 where $\alpha_i \in \{1, -1\}$

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Reducible vector u exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

Claim.

$$\sum_{i \in T} \alpha_i v_i = \overrightarrow{0}$$
 where $\alpha_i \in \{1, -1\}$

Let
$$\mathbf{u} = \sum_{i:\alpha_i=1} v_i$$
 and $\mathbf{w} = \sum_{i:\alpha_i=-1} v_i$

Then u = w are disjoint subset-sum in $\{v_i\}$

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Reducible vector u exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

Claim.

$$\sum_{i \in T} \alpha_i v_i = \overrightarrow{0}$$
 where $\alpha_i \in \{1, -1\}$

Let
$$oldsymbol{u} = \sum_{oldsymbol{i}: lpha_i = 1} oldsymbol{v}_i$$
 and $oldsymbol{w} = \sum_{oldsymbol{i}: lpha_i = -1} oldsymbol{v}_i$

Then u = w are disjoint subset-sum in $\{v_i\}$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Reducible vector u exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

Claim.

$$\sum_{i \in T} \alpha_i v_i = \overrightarrow{0}$$
 where $\alpha_i \in \{1, -1\}$

Let
$$oldsymbol{u} = \sum_{oldsymbol{i}: lpha_i = 1} oldsymbol{v}_i$$
 and $oldsymbol{w} = \sum_{oldsymbol{i}: lpha_i = -1} oldsymbol{v}_i$

Then $\boldsymbol{u} = \boldsymbol{w}$ are disjoint subset-sum in $\{\boldsymbol{v_i}\}$

Def (reducible vector).

u is reducible in $T \subseteq [m]$ if any multiple of u is a subset-sum of vectors in T

Claim.

Reducible vector u exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

Claim.

Linear dependence exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

$$\mathbf{0} \cdot \mathbf{u} = \overrightarrow{\mathbf{0}}$$
 is a subset-sum

$$1 \cdot u = u$$
 is a subset-sum

$$2 \cdot u = u + w$$
 is a subset-sum

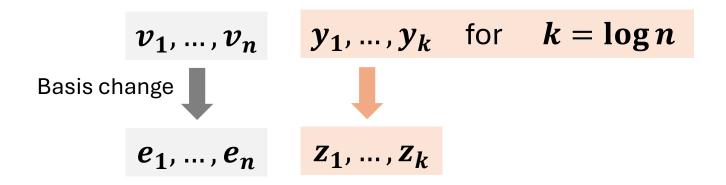
u is reducible

Claim.

$$v_1, \dots, v_n$$
 y_1, \dots, y_k for $k = \log n$

F_3^n -Subset-Sum

Claim.

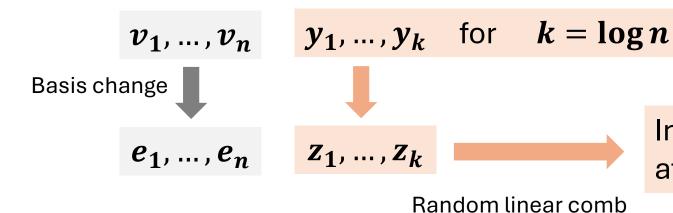


F_3^n -Subset-Sum

Claim.

with $\alpha_1, ..., \alpha_k \in \mathbf{F}_3$

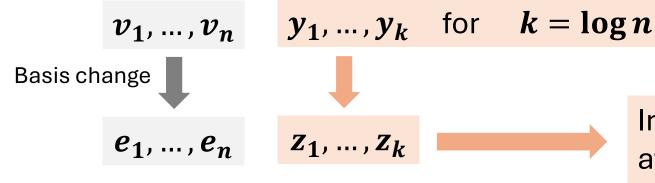
Linear dependence exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$



In expectation $z = \sum_i \alpha_i z_i$ has at most 2n/3 nonzero entries

Claim.

Linear dependence exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$



In expectation $z = \sum_i \alpha_i z_i$ has at most 2n/3 nonzero entries

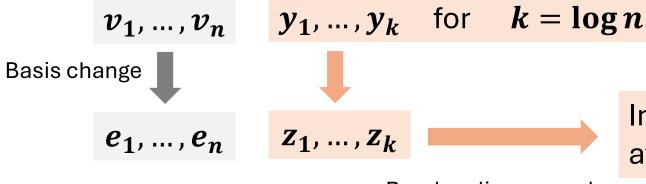
Random linear comb with $\alpha_1, ..., \alpha_k \in \mathbf{F}_3$

Derandom and exclude $lpha_1=\cdots=lpha_k=\mathbf{0}$

Some explicit nontrivial $z=\sum_i \alpha_i z_i$ has at most $\frac{2n/3}{1-3^{-k}} \approx 2n/3$ nonzero entries

Claim.

Linear dependence exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$



In expectation $z = \sum_i \alpha_i z_i$ has at most 2n/3 nonzero entries

Random linear comb with $\alpha_1, ..., \alpha_k \in \mathbf{F}_3$

Derandom and exclude $\alpha_1 = \cdots = \alpha_k = 0$

Use $\approx 2n/3$ of them to produce -z

Some explicit nontrivial $z=\sum_i lpha_i z_i$ has at most $rac{2n/3}{1-3^{-k}}pprox 2n/3$ nonzero entries

Claim.

Linear dependence exists with $|T| \approx 2n/3$ whenever $m \geq n + \log n$

$$v_1, \dots, v_n$$
 y_1, \dots, y_k for $k = \log n$

Basis change z_1, \dots, z_k z_1, \dots, z_k

Random linear comb

In expectation $z=\sum_i \alpha_i z_i$ has at most 2n/3 nonzero entries

Derandom and exclude

 $\alpha_1 = \cdots = \alpha_k = 0$

Use $\approx 2n/3$ of them to produce -z

Some explicit nontrivial $z=\sum_i lpha_i z_i$ has at most $rac{2n/3}{1-3^{-k}}pprox 2n/3$ nonzero entries

with $\alpha_1, \dots, \alpha_k \in \mathbf{F}_3$

Open problem on $\mathbf{F_3}^n$ -Subset-Sum

Given $m \approx n^2/3$ vectors in F_3^n , we can efficiently find a nontrivial subset that sums to $\vec{0}$

Open problem on \mathbf{F}_3^n -Subset-Sum

Given $m \approx n^2/3$ vectors in F_3^n , we can efficiently find a nontrivial subset that sums to $\vec{0}$

Is $m \ll n^2/3$ possible?

Given $m \approx n^2/3$ vectors in F_3^n , we can efficiently find a nontrivial subset that sums to $\vec{0}$

Is $m \ll n^2/3$ possible? m = 2n + 1 guarantees solution

Given $m \approx n^2/3$ vectors in F_3^n , we can efficiently find a nontrivial subset that sums to $\vec{0}$

```
Is m \ll n^2/3 possible?

m = 2n + 1 guarantees solution

Average case?
```

Given $m \approx n^2/3$ vectors in \mathbf{F}_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

```
Is m \ll n^2/3 possible? m = 2n + 1 guarantees solution Average case?
```

Given $m \approx (1 + o(1))n$ vectors in F_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Given $m \approx n^2/3$ vectors in \mathbf{F}_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

```
Is m \ll n^2/3 possible? m = 2n + 1 guarantees solution Average case?
```

Given $m \approx (1 + o(1))n$ vectors in F_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

Given $m \approx n^2/3$ vectors in \mathbf{F}_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

```
Is m \ll n^2/3 possible?

m = 2n + 1 guarantees solution

Average case?
```

Given $m \approx (1 + o(1))n$ vectors in F_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

Given $m \approx n^2/3$ vectors in \mathbf{F}_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

```
Is m \ll n^2/3 possible?

m = 2n + 1 guarantees solution

Average case?
```

Given $m \approx (1 + o(1))n$ vectors in F_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

No, consider e_1, \dots, e_n and o(n) random vectors

Given $m \approx n^2/3$ vectors in F_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{0}$

```
Is m \ll n^2/3 possible?

m = 2n + 1 guarantees solution

Average case?
```

Given $m \approx n^{1.99}$ vectors in \mathbf{F}_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

Open problem on ${\bf F_3^n}$ -Subset-Sum

Given $m \approx n^2/3$ vectors in \mathbf{F}_3^n , we can efficiently find a nontrivial subset that sums to $\overrightarrow{\mathbf{0}}$

```
Is m \ll n^2/3 possible?

m = 2n + 1 guarantees solution

Average case?
```

Given $m \approx n^{1.99}$ vectors in \mathbf{F}_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

```
Is R \ll 2n/3 possible?

R \approx n/\log n is possible, ignoring efficiency
```

Given $m \approx n^{100}$ vectors in F_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

 $R \approx n/\log n$ is possible, ignoring efficiency

Given $m \approx n^{100}$ vectors in \mathbf{F}_3^n , we can efficiently find linear dependence that uses only $R \approx 2n/3$ vectors

Is $R \ll 2n/3$ possible?

 $R \approx n/\log n$ is possible, ignoring efficiency

Given $m \approx n^{100}$ vectors in \mathbf{F}_2^n , we can efficiently find linear dependence that uses only $\mathbf{R} \approx n/2$ vectors

Is $R \ll n/2$ possible?

 $R \approx n/\log n$ is possible, ignoring efficiency

Algorithm overview

Fⁿ₃-Subset-Sum Reducible vector

The SIS[∞] problem Weight reduction

The A-SIS problem
General reduction

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Proof. View \mathbf{F}_p as $\{-\lfloor p/2 \rfloor, ..., \lfloor p/2 \rfloor\}$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k \log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k = 2^i$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k=2^i$ Base case is i=0 and $h=\frac{p}{2}$ Then $m\geq n+1$ suffices

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k=2^i$ Base case is i=0 and $n=\frac{p}{2}$ Then $m\geq n+1$ suffices

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k=2^i$ Base case is i=0 and $h=\frac{p}{2}$

Then $m \ge n + 1$ suffices

Since
$$m=(n+1)^k$$
 suffices for $h=rac{p}{2k}$ $m=(n+1)^{2k}$ suffices for $h=rac{p}{4k}$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k=2^i$

Base case is i = 0 and $h = \frac{p}{2}$

Then $m \ge n + 1$ suffices

Since
$$m=(n+1)^k$$
 suffices for $h=\frac{p}{2k}$ $m=(n+1)^{2k}$ suffices for $h=\frac{p}{4k}$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Dimension reduction and **exploring sparsity** also apply

Fact. If h = p/2, then m = n + 1 suffices

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Theorem (Imran-Ivanyos'25).

Assume k is a power of two and

$$m \gg p^{k\log k} n^k$$

Classical polytime algorithm for

$$h=\frac{p}{2k}$$

Proof.

By induction on $k=2^i$

Base case is
$$i = 0$$
 and $h = \frac{p}{2}$

Then $m \ge n + 1$ suffices

Since
$$m=(n+1)^k$$
 suffices for $h=\frac{p}{2k}$ $m=(n+1)^{2k}$ suffices for $h=\frac{p}{4k}$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight halving).

If m = R suffices for h = B, then $m = R^2$ suffices for h = B/2

Lemma (weight halving). If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^2 vectors into R batches of R vectors Compute reducible vector $u^{(i)}$ in each batch Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Lemma (weight halving). If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^2 vectors into R batches of R vectors Compute reducible vector $u^{(i)}$ in each batch Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Def (reducible vector).

 $oldsymbol{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $oldsymbol{c} \cdot oldsymbol{u^{(i)}}$ is a linear comb of vectors in batch $oldsymbol{i}$ using coeffs in $\pm B/2$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^2 vectors into R batches of R vectors

Compute reducible vector $u^{(i)}$ in each batch

Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Def (reducible vector).

 $oldsymbol{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $oldsymbol{c} \cdot oldsymbol{u^{(i)}}$ is a linear comb of vectors in batch $oldsymbol{i}$ using coeffs in $\pm B/2$

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

$$eta_1 u^{(1)} + \dots + eta_R u^{(R)} = \overrightarrow{0}$$
 where $-B \le eta_i \le B$ not all- 0

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^2 vectors into R batches of R vectors Compute reducible vector $u^{(i)}$ in each batch Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Def (reducible vector).

 $m{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/2$

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Lemma (weight halving).

$$eta_1 u^{(1)} + \dots + eta_R u^{(R)} = \overrightarrow{0}$$

where $-B \le eta_i \le B$ not all- 0

Replace each $oldsymbol{eta_i} oldsymbol{u^{(i)}}$ by reducibility

Input: $v_1, \dots, v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^2 vectors into R batches of R vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

Def (reducible vector).

 $m{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/2$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$v_1^{(i)}, \dots, v_R^{(i)}$$
 $c_1 v_1^{(i)} + \dots + c_R v_R^{(i)} = \overrightarrow{\mathbf{0}}$ where $-B \leq c_i \leq B$ not all- $\mathbf{0}$

Def (reducible vector).

 $u^{(i)}$ is reducible if for any $-B \leq c \leq B$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Since m = R suffices for h = B

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$v_1^{(i)}, \dots, v_R^{(i)}$$

$$c_1 v_1^{(i)} + \cdots + c_R v_R^{(i)} = \overrightarrow{\mathbf{0}}$$
 where $-B \leq c_j \leq B$ not all- $\mathbf{0}$

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Since m = R suffices for h = B

Def (reducible vector).

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\mathbb{u}^{(i)}$ in each batch

$$\begin{aligned} \mathbf{1} \cdot T_1 + \mathbf{2} \cdot T_2 + \cdots + B \cdot T_B &= \overrightarrow{\mathbf{0}} \\ \text{where } T_s &= \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)} \end{aligned}$$

Def (reducible vector).

 $m{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/2$

Input: $v_1, \dots, v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Def (reducible vector).

 $u^{(i)}$ is reducible if for any $-B \leq c \leq B$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Partition R^2 vectors into R batches of R vectors Compute reducible vector $u^{(i)}$ in each batch

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $u^{(i)}$ in each batch

$$\begin{aligned} \mathbf{1} \cdot T_1 + 2 \cdot T_2 + \cdots + B \cdot T_B &= \overrightarrow{\mathbf{0}} \\ \text{where } T_s &= \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)} \end{aligned}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$, $c \cdot u^{(i)}$ is a linear comb of vectors in batch iusing coeffs in $\pm B/2$

$$c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 \end{cases}$$

Def (reducible vector).

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors

Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$\mathbf{1} \cdot T_1 + \mathbf{2} \cdot T_2 + \cdots + B \cdot T_B = \overrightarrow{\mathbf{0}}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$ has coeffs $\pm c \subseteq \pm B/2$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

$$m{u^{(i)}}$$
 is reducible if for any $-B \le c \le B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/2$

$$c \cdot u^{(i)} \begin{cases} 0 \leq c \leq B/2 \end{cases}$$

Def (reducible vector).

has coeffs $\pm c \subseteq \pm B/2$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $u^{(i)}$ in each batch

$$1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B = \vec{0}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$
$$c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 \\ B/2 < c \le B \end{cases}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

Def (reducible vector). $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$, $c \cdot u^{(i)}$ is a linear comb of vectors in batch iusing coeffs in $\pm B/2$

$$c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 & \checkmark \\ B/2 < c \le B \end{cases}$$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$\begin{aligned} \mathbf{1}\cdot T_1 + \mathbf{2}\cdot T_2 + \cdots + B\cdot T_B &= \overrightarrow{\mathbf{0}}\\ \text{where } T_s &= \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)} \end{aligned}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

$$1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B = \vec{0}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$
$$= c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 & \checkmark \\ B/2 < c \le B \end{cases}$$

$$= c \cdot u^{(i)} - (1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B)$$

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Def (reducible vector).

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

$$c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 \\ B/2 < c \le B \end{cases}$$

$$= c \cdot u^{(i)} - (1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B)$$

$$= \sum_{s < B/2} (-s) \cdot T_s + \sum_{s \ge B/2} (c - s) \cdot T_s$$

Def (reducible vector).

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$\begin{aligned} \mathbf{1} \cdot T_1 + 2 \cdot T_2 + \cdots + B \cdot T_B &= \overrightarrow{\mathbf{0}} \\ \text{where } T_s &= \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)} \end{aligned}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

$$c \cdot \boldsymbol{u^{(i)}} \begin{cases} 0 \leq c \leq B/2 & \checkmark \\ B/2 < c \leq B \end{cases}$$

$$= c \cdot \boldsymbol{u^{(i)}} - (1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B)$$

$$= \sum_{s < B/2} (-s) \cdot T_s + \sum_{s \geq B/2} (c - s) \cdot T_s$$
has coeffs $\pm B/2$
since $s \leq B/2$ and $|c - s| \leq B/2$
and T_s has coeff ± 1

Def (reducible vector).

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $u^{(i)}$ in each batch

$$1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B = \vec{0}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$
$$c \cdot u^{(i)} \begin{cases} 0 \le c \le B/2 & \checkmark \\ B/2 < c \le B & \checkmark \end{cases}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

for
$$oldsymbol{u^{(i)}}$$
 in each batch $oldsymbol{c} \cdot oldsymbol{u^{(i)}} igg\{ egin{array}{c} 0 \leq c \leq B/2 \\ -1 \end{array} igg\}$

Def (reducible vector).

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $u^{(i)}$ in each batch

$$1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B = \vec{0}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$
$$C \cdot u^{(i)} \begin{cases} 0 \le |c| \le B/2 & \checkmark \\ B/2 < |c| \le B \end{cases}$$

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

$$m{u^{(i)}}$$
 is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/2$

$$c \cdot u^{(i)} \begin{cases} 0 \le |c| \le B/2 & \checkmark \\ B/2 < |c| \le B & \checkmark \end{cases}$$

Def (reducible vector).

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$1 \cdot T_1 + 2 \cdot T_2 + \dots + B \cdot T_B = \vec{0}$$
 where $T_s = \sum_{j:c_j=s} v_j^{(i)} + \sum_{j:c_j=-s} -v_j^{(i)}$
$$C \cdot u^{(i)} \begin{cases} 0 \le |c| \le B/2 & \checkmark \\ B/2 < |c| \le B \end{cases}$$

$$c \cdot u^{(i)} \begin{cases} 0 \leq |c| \leq B/2 & \checkmark \\ B/2 < |c| \leq B & \checkmark \end{cases}$$

Def (reducible vector).

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

 $\boldsymbol{u^{(i)}}$ is reducible

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\boldsymbol{u^{(i)}}$ in each batch

$$\mathbf{1}\cdot T_1+2\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

What if $T_{B/2} + T_{B/2+1} + \cdots + T_B$ is an empty sum?

Define
$$u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$$

Def (reducible vector).

 $u^{(i)}$ is reducible if for any $-B \leq c \leq B$, $c \cdot u^{(i)}$ is a linear comb of vectors in batch iusing coeffs in $\pm B/2$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\mathbb{u}^{(i)}$ in each batch

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

Define $u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$

What if $T_{B/2} + T_{B/2+1} + \cdots + T_B$ is an empty sum?

 $\boldsymbol{u^{(i)}}$ is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/2$

 $c \cdot u^{(i)}$ is a linear comb of vectors in batch i

Def (reducible vector).

$$c_1v_1^{(i)}+\cdots+c_Rv_R^{(i)}=\overrightarrow{\mathbf{0}}$$
 where $-B/2\leq c_j\leq B/2$ not all- $\mathbf{0}$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition \mathbb{R}^2 vectors into \mathbb{R} batches of \mathbb{R} vectors Compute reducible vector $\mathbb{u}^{(i)}$ in each batch

$$\mathbf{1}\cdot T_1+2\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j^{(i)}+\sum_{j:c_j=-s}-v_j^{(i)}$

Define $u^{(i)} = T_{B/2} + T_{B/2+1} + \cdots + T_B$

 $oldsymbol{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $c \cdot oldsymbol{u^{(i)}}$ is a linear comb of vectors in batch $oldsymbol{i}$ using coeffs in $\pm B/2$

What if $T_{B/2} + T_{B/2+1} + \cdots + T_B$ is an empty sum?

$$c_1v_1^{(i)}+\cdots+c_Rv_R^{(i)}=\overrightarrow{\mathbf{0}}$$
 where $-B/2\leq c_i\leq B/2$ not all- $\mathbf{0}$

Let $c_j \leftarrow 2c_j$ and try again

Def (reducible vector).

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Lemma (iterative halving).

If m=R suffices for h=B, then $m=R^{2^t}$ suffices for $h=B/2^t$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight halving).

If m=R suffices for h=B, then $m=R^2$ suffices for h=B/2

Lemma (iterative halving).

If m=R suffices for h=B, then $m=R^{2^t}$ suffices for $h=B/2^t$

How about dividing 3?

Do we have to pay $m = R^4$ and get the stronger h = B/4?

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight trisecting).

If m = R suffices for h = B, then $m = R^3$ suffices for h = B/3

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Lemma (weight trisecting).

If m = R suffices for h = B,

then $m = R^3$ suffices for h = B/3

Partition R^3 vectors into R batches of R^2 vectors Compute reducible vector $u^{(i)}$ in each batch Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Lemma (weight trisecting). If m = R suffices for h = B, then $m = R^3$ suffices for h = B/3

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$

Output: linear dependence using coeffs in $\pm h$

Partition R^3 vectors into R batches of R^2 vectors Compute reducible vector $u^{(i)}$ in each batch Compute linear dependence of $\{u^{(i)}\}$ and substitute back

Def (reducible vector).

 $m{u^{(i)}}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u^{(i)}}$ is a linear comb of vectors in batch $m{i}$ using coeffs in $\pm B/3$

$$eta_1 u^{(1)} + \dots + eta_R u^{(R)} = \overrightarrow{0}$$

where $-B \le eta_i \le B$ not all- 0

Replace each $\beta_i u^{(i)}$ by reducibility

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$v_1, \dots, v_R$$

$$c_1v_1+\cdots+c_Rv_R=\overrightarrow{\mathbf{0}}$$
 where $-B\leq c_j\leq B$ not all- $\mathbf{0}$

Since m = R suffices for h = B

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j+\sum_{j:c_j=-s}-v_j$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$v_1, \dots, v_R$$

$$c_1v_1+\cdots+c_Rv_R=\overrightarrow{\mathbf{0}}$$
 where $-B\leq c_j\leq B$ not all- $\mathbf{0}$

Since m = R suffices for h = B

$$\overrightarrow{\mathbf{0}} = \sum_{s < B/3} s \cdot T_s + \sum_{B/3 \le s < 2B/3} s \cdot T_s + \sum_{s \ge 2B/3} s \cdot T_s$$

$$\mathbf{1}\cdot T_1+\mathbf{2}\cdot T_2+\cdots+B\cdot T_B=\overrightarrow{\mathbf{0}}$$
 where $T_s=\sum_{j:c_j=s}v_j+\sum_{j:c_j=-s}-v_j$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s + \sum_{B/3 \le s < 2B/3} s \cdot T_s + \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \le c \le B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s + \sum_{B/3 \le s < 2B/3} s \cdot T_s + \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

$$x = \begin{bmatrix} \sum_{s < B/3} T_s \\ \sum_{B/3 \le s < 2B/3} T_s \\ \sum_{s \ge 2B/3} T_s \end{bmatrix}$$

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \le c \le B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s + \sum_{B/3 \le s < 2B/3} s \cdot T_s + \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

$$x = egin{bmatrix} \sum_{s < B/3}^{} T_s \ \sum_{B/3 \le s < 2B/3}^{} T_s \end{bmatrix}$$
 Small Median $\sum_{s \ge 2B/3}^{} T_s$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s
+ \sum_{B/3 \le s < 2B/3} s \cdot T_s
+ \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

$$x = egin{bmatrix} \sum_{s < B/3}^{T_s} T_s \ \sum_{B/3 \le s < 2B/3}^{T_s} T_s \end{bmatrix}$$
 Small

$$\sum_{s > 2B/3}^{T_s} T_s$$
 Large

x is a vector in \mathbf{F}_{n}^{3n}

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s
+ \sum_{B/3 \le s < 2B/3} s \cdot T_s
+ \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

$$x = egin{bmatrix} \sum_{s < B/3}^{T_s} T_s \ \sum_{B/3 \le s < 2B/3}^{T_s} T_s \end{bmatrix}$$
 Small
$$\sum_{s \ge 2B/3}^{T_s} T_s$$
 Large

x is a vector in \mathbf{F}_n^{3n}

Expand x in terms of $\pm v_1 \dots, \pm v_R$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$\overrightarrow{0} = \sum_{s < B/3} s \cdot T_s + \sum_{B/3 \le s < 2B/3} s \cdot T_s + \sum_{s \ge 2B/3} s \cdot T_s$$

Each T_s is a disjoint signed-subset-sum of $v_1 \dots, v_R$

$$x = egin{bmatrix} \sum_{s < B/3}^{} T_s \ \sum_{B/3 \le s < 2B/3}^{} T_s \ \sum_{s \ge 2B/3}^{} T_s \end{bmatrix}$$
 Small

x is a vector in \mathbf{F}_n^{3n}

Expand x in terms of $\pm v_1$..., $\pm v_R$ and combine

- **Small** ones with **small** coeffs $0 \sim B/3$
- **Median** ones with **median** coeffs $B/3 \sim 2B/3$
- **Large** ones with **large** coeffs $2B/3 \sim B$

We obtain $\vec{0}$

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$egin{aligned} v_1, \dots, v_R \ & & & \\ x = \begin{bmatrix} x_{\mathrm{Small}} \\ x_{\mathrm{Median}} \\ x_{\mathrm{Large}} \end{bmatrix}$$

 $x_{
m Small}$, $x_{
m Median}$, $x_{
m Large}$ are disjoint signed-subset-sums

Expand in terms of $\pm v_1 \dots$, $\pm v_R$ and combine

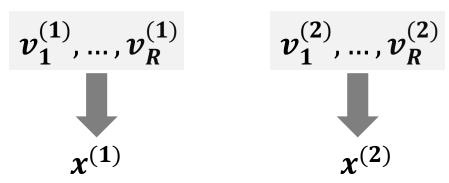
- $x_{
 m Small}$ ones with **small** coeffs $0 \sim B/3$
- $x_{
 m Median}$ ones with **median** coeffs $B/3\sim 2B/3$
- x_{Large} ones with large coeffs $2B/3 \sim B$

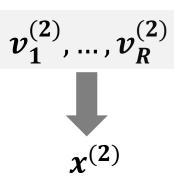
We obtain $\vec{0}$

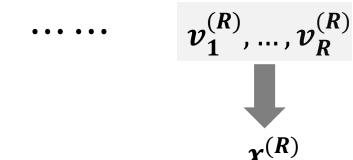
Def (reducible vector).

 \boldsymbol{u} is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$



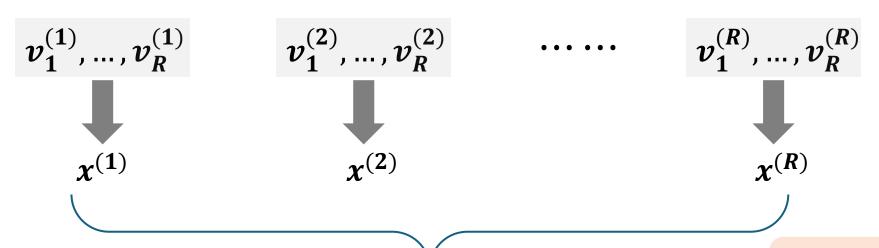




Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$



$$c_1 x^{(1)} + \cdots + c_R x^{(R)} = \overrightarrow{\mathbf{0}}$$
 where $-B \leq c_i \leq B$ not all- $\mathbf{0}$

Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$c_1 x^{(1)} + \cdots + c_R x^{(R)} = \overrightarrow{\mathbf{0}}$$
 where $-\mathbf{B} \leq c_j \leq \mathbf{B}$ not all- $\mathbf{0}$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

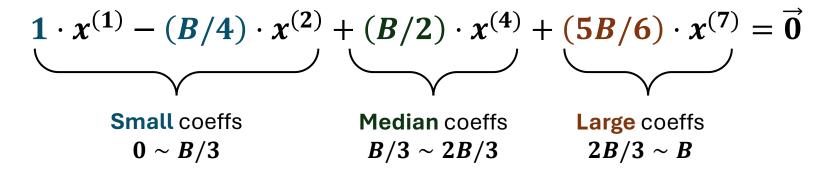
Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$1 \cdot x^{(1)} - (B/4) \cdot x^{(2)} + (B/2) \cdot x^{(4)} + (5B/6) \cdot x^{(7)} = \vec{0}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

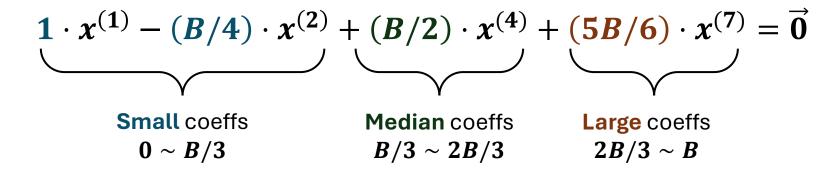
Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$



Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

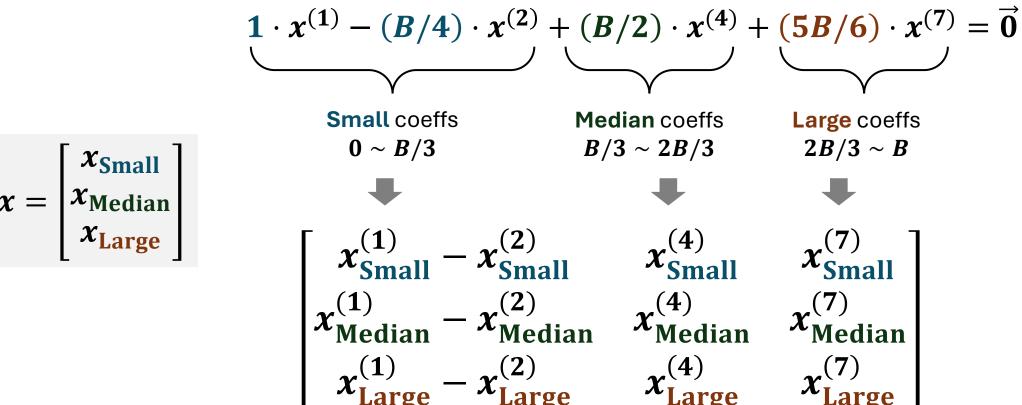


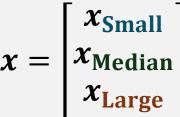
$$x = \begin{bmatrix} x_{\text{Small}} \\ x_{\text{Median}} \\ x_{\text{Large}} \end{bmatrix}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$





Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Every row of M sums to $\vec{0}$ with proper small, median, large weights

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \leq c \leq B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Every row of M sums to $\vec{0}$ with proper small, median, large weights

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$\mathbf{1} \cdot x^{(1)} - (B/4) \cdot x^{(2)} + (B/2) \cdot x^{(4)} + (5B/6) \cdot x^{(7)} = \vec{0}$$

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \le c \le B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$\mathbf{1} \cdot x^{(1)} - (B/4) \cdot x^{(2)} + (B/2) \cdot x^{(4)} + (5B/6) \cdot x^{(7)} = \vec{0}$$

$$x = \begin{bmatrix} x_{\text{Small}} \\ x_{\text{Median}} \\ x_{\text{Large}} \end{bmatrix}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$1 \cdot x^{(1)} - (B/4) \cdot x^{(2)} + (B/2) \cdot x^{(4)} + (5B/6) \cdot x^{(7)} = \vec{0}$$

$$1 \cdot x_{\text{Small}}^{(1)} - (B/4) \cdot x_{\text{Small}}^{(2)} + (B/2) \cdot x_{\text{Small}}^{(4)} + (5B/6) \cdot x_{\text{Small}}^{(7)} = \vec{0}$$

$$x = \begin{bmatrix} x_{\text{Small}} \\ x_{\text{Median}} \\ x_{\text{Large}} \end{bmatrix}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$1 \cdot x_{\text{Small}}^{(1)} - (B/4) \cdot x_{\text{Small}}^{(2)} + (B/2) \cdot x_{\text{Small}}^{(4)} + (5B/6) \cdot x_{\text{Small}}^{(7)} = \vec{0}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$1 \cdot x_{\text{Small}}^{(1)} - (B/4) \cdot x_{\text{Small}}^{(2)} + (B/2) \cdot x_{\text{Small}}^{(4)} + (5B/6) \cdot x_{\text{Small}}^{(7)} = \vec{0}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of M is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$1 \cdot x_{\text{Small}}^{(1)} - (B/4) \cdot x_{\text{Small}}^{(2)} + (B/2) \cdot x_{\text{Small}}^{(4)} + (5B/6) \cdot x_{\text{Small}}^{(7)} = \vec{0}$$
small \cdot a \quad \text{median} \cdot b \quad \text{large} \cdot t

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, \dots, {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$1 \cdot x_{\text{Small}}^{(1)} - (B/4) \cdot x_{\text{Small}}^{(2)} + (B/2) \cdot x_{\text{Small}}^{(4)} + (5B/6) \cdot x_{\text{Small}}^{(7)} = \vec{0}$$

$$\text{small} \cdot a + \text{median} \cdot b + \text{large} \cdot t = \vec{0}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of M is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Every **column** of M sums to $\overrightarrow{\mathbf{0}}$ with proper **small**, **median**, **large** weights

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of M is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$x^{(1)} = \begin{bmatrix} x_{\text{Small}}^{(1)} \\ x_{\text{Median}}^{(1)} \\ x_{\text{Large}}^{(1)} \end{bmatrix} = x^{(2)}$$

$$\begin{bmatrix} x_{\text{Small}}^{(2)} \\ x_{\text{Median}}^{(2)} \\ x_{\text{Large}}^{(2)} \end{bmatrix} = x^{(2)}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

$$x^{(1)} = \begin{bmatrix} x_{\text{Small}}^{(1)} \\ x_{\text{Median}}^{(1)} \\ x_{\text{Large}}^{(1)} \end{bmatrix} \qquad \begin{bmatrix} a \\ d \\ g \end{bmatrix} \qquad \begin{bmatrix} x_{\text{Small}}^{(2)} \\ x_{\text{Median}}^{(2)} \\ x_{\text{Large}}^{(2)} \end{bmatrix} = x^{(2)}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector ${m u}$ in ${m v_1}, ..., {m v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of v_1, \dots, v_{R^2}

$$x^{(1)} = \begin{bmatrix} x_{\text{Small}}^{(1)} \\ x_{\text{Median}}^{(1)} \\ x_{\text{Large}}^{(1)} \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(2)} \\ x_{\text{Median}}^{(2)} \\ x_{\text{Large}}^{(2)} \end{bmatrix} = x^{(2)}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector \boldsymbol{u} in $\boldsymbol{v_1}, \dots, \boldsymbol{v_{R^2}}$

$$M = \begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} x_{\text{Small}}^{(1)} - x_{\text{Small}}^{(2)} & x_{\text{Small}}^{(4)} & x_{\text{Small}}^{(7)} \\ x_{\text{Median}}^{(1)} - x_{\text{Median}}^{(2)} & x_{\text{Median}}^{(4)} & x_{\text{Median}}^{(7)} \\ x_{\text{Large}}^{(1)} - x_{\text{Large}}^{(2)} & x_{\text{Large}}^{(4)} & x_{\text{Large}}^{(7)} \end{bmatrix}$$

Observation.

Every entry of \emph{M} is a disjoint signed-subset-sum of $v_1, ..., v_{R^2}$

Every **row** of M sums to $\vec{0}$ with proper **small**, **median**, **large** weights

Every **column** of M sums to $\overrightarrow{\mathbf{0}}$ with proper **small**, **median**, **large** weights

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

$$\begin{array}{c|cccc} \mathbf{small'} & a & b & t \\ \mathbf{median'} & d & e & f \\ \mathbf{d} & e & f \\ \mathbf{g} & h & i \end{array}$$

$$= \overrightarrow{\mathbf{0}}$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Def (reducible vector).

 $m{u}$ is reducible if for any $-B \le c \le B$, $m{c} \cdot m{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ darge' & g & h & i \end{bmatrix} = \vec{0}$$
 $\vec{0}$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c)$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Small $0 \sim B/3$

Large $2B/3 \sim B$

Median $B/3 \sim 2B/3$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c)$$
 $c \cdot u \text{ has coeffs in } \pm c \subseteq \pm B/3$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

u = f - h

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, \dots, oldsymbol{v_{R^2}}$

 $c \cdot u$

 $= c \cdot f$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$B/3 < c \le 2B/3 \text{ (median } c)$$

 $0 \le c \le B/3 \text{ (small } c) \checkmark$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} a & b & t \\ d & e & f \\ d & d & i \end{bmatrix}$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c)$

$$c \cdot u$$
= $c \cdot f - (\text{small}' \cdot t + \text{median}' \cdot f + \text{large}' \cdot i)$
- $c \cdot h$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
median'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$
large'
 $= \vec{0}$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c)$

$$c \cdot u$$
= $c \cdot f - (\text{small}' \cdot t + \text{median}' \cdot f + \text{large}' \cdot i)$

$$-c \cdot h + (\text{small} \cdot g + \text{median} \cdot h + \text{large} \cdot i)$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$



Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c)$

$$c \cdot u$$

$$= c \cdot f - (\text{small}' \cdot t + \text{median}' \cdot f + \text{large}' \cdot i)$$

$$-c \cdot h + (\text{small} \cdot g + \text{median} \cdot h + \text{large} \cdot i)$$

$$= \cdot t + \cdot g$$

$$+ \cdot f + \cdot h$$

$$+ \cdot i$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c)$

$$c \cdot u$$

= $c \cdot f - (\text{small}' \cdot t + \text{median}' \cdot f + \text{large}' \cdot i)$
- $c \cdot h + (\text{small} \cdot g + \text{median} \cdot h + \text{large} \cdot i)$
= $-\text{small}' \cdot t + \text{small} \cdot g$
+ $(c - \text{median}') \cdot f + (\text{median} - c) \cdot h$
+ $(\text{large} - \text{large}') \cdot i$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c)$

$$c \cdot u$$

$$= c \cdot f - (\text{small}' \cdot t + \text{median}' \cdot f + \text{large}' \cdot i)$$

$$-c \cdot h + (\text{small} \cdot g + \text{median} \cdot h + \text{large} \cdot i)$$

$$= -\text{small}' \cdot t + \text{small} \cdot g$$

$$+ (c - \text{median}') \cdot f + (\text{median} - c) \cdot h$$

$$+ (\text{large} - \text{large}') \cdot i$$
Coeffs in $\pm B/3$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < c \le 2B/3 \text{ (median } c) \checkmark$
 $2B/3 < c \le B \text{ (Large } c)$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ large' & g & h & i \end{bmatrix} = \vec{0}$$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$
 $B/3 < c \le 2B/3 \text{ (median } c) \checkmark$
 $2B/3 < c \le B \text{ (Large } c)$
 $c \cdot u$
 $= c \cdot f - \text{(small } \cdot d + \text{median } \cdot e + \text{large } \cdot f)$

 $-c \cdot h + (\text{small}' \cdot b + \text{median}' \cdot e + \text{large}' \cdot h)$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

$$B/3 < c \le 2B/3 \text{ (median } c) \checkmark$$

$$2B/3 < c \le B \text{ (Large } c)$$

$$c \cdot u$$

$$= c \cdot f - (\text{small} \cdot d + \text{median} \cdot e + \text{large} \cdot f)$$

$$-c \cdot h + (\text{small'} \cdot b + \text{median'} \cdot e + \text{large'} \cdot h)$$

$$= -\text{small} \cdot d + \text{small'} \cdot b$$

$$+ (\text{median'} - \text{median}) \cdot e$$

$$+ (c - \text{large}) \cdot f + (\text{large'} - c) \cdot h$$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

Small
$$0 \sim B/3$$

Median $B/3 \sim 2B/3$
Large $2B/3 \sim B$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$

$$B/3 < c \le 2B/3 \text{ (median } c) \checkmark$$

$$2B/3 < c \le B \text{ (Large } c)$$

$$c \cdot u$$

$$= c \cdot f - (\text{small } \cdot d + \text{median } \cdot e + \text{large } \cdot f)$$

$$-c \cdot h + (\text{small'} \cdot b + \text{median'} \cdot e + \text{large'} \cdot h)$$

$$= -\text{small } \cdot d + \text{small'} \cdot b$$

$$+ (\text{median'} - \text{median}) \cdot e$$

$$+ (c - \text{large}) \cdot f + (\text{large'} - c) \cdot h$$
Coeffs in $\pm B/3$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le c \le B/3 \text{ (small } c) \checkmark$$
 $B/3 < c \le 2B/3 \text{ (median } c) \checkmark$
 $2B/3 < c \le B \text{ (Large } c) \checkmark$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le |c| \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < |c| \le 2B/3 \text{ (median } c) \checkmark$
 $2B/3 < |c| \le B \text{ (Large } c) \checkmark$

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & i \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le |c| \le B/3 \text{ (small } c) \checkmark$$

 $B/3 < |c| \le 2B/3 \text{ (median } c) \checkmark$
 $2B/3 < |c| \le B \text{ (Large } c) \checkmark$

u is reducible

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le |c| \le B/3 \text{ (small } c) \checkmark$$

$$B/3 < |c| \le 2B/3 \text{ (median } c) \checkmark$$

 $2B/3 < |c| \le B \text{ (Large } c) \checkmark$

What if **f** and **h** are empty?

u is reducible

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/3$

Construct reducible vector $oldsymbol{u}$ in $oldsymbol{v_1}, ..., oldsymbol{v_{R^2}}$

are empty?

small median large

small'
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & e & f \end{bmatrix} = \vec{0}$$

large' $\begin{bmatrix} g & h & i \end{bmatrix}$

$$u = f - h$$

$$0 \le |c| \le B/3 \text{ (small } c) \checkmark$$

$$B/3 < |c| \le 2B/3 \pmod{c}$$
 \(\sim 2B/3 < |c| \le B \text{(Large } c) \(\sim \)

What if f and h u is reducible

Need to change the base algorithm slightly to ensure nonemptiness

Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).

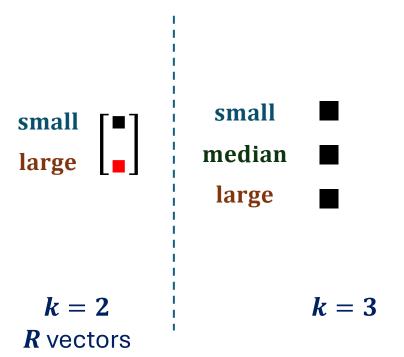
u is reducible if for any $-B \le c \le B$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm B/k$

Linear dependence of R vectors using coeffs $\pm B$

$$k = 2$$
 R vectors

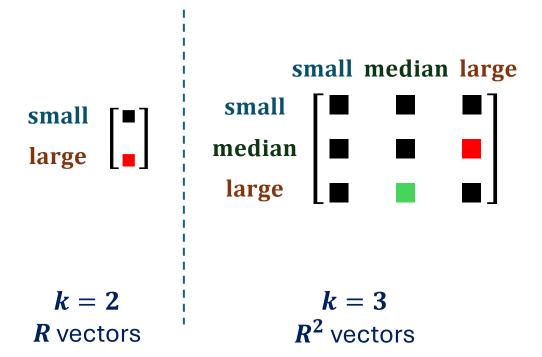
Def (reducible vector).

Linear dependence of R vectors using coeffs $\pm B$



Def (reducible vector).

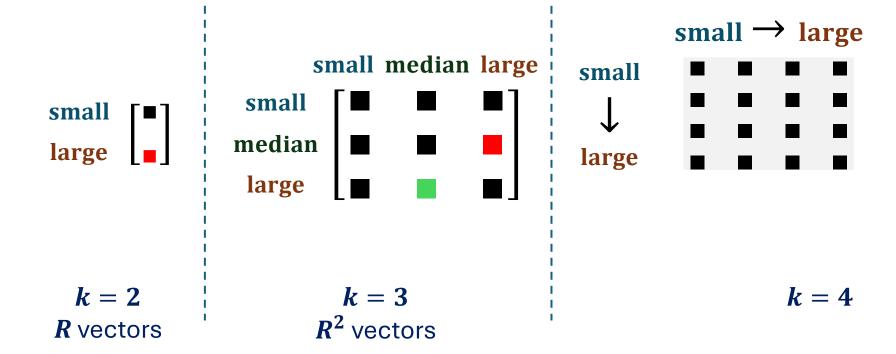
Linear dependence of R vectors using coeffs $\pm B$



Def (reducible vector).

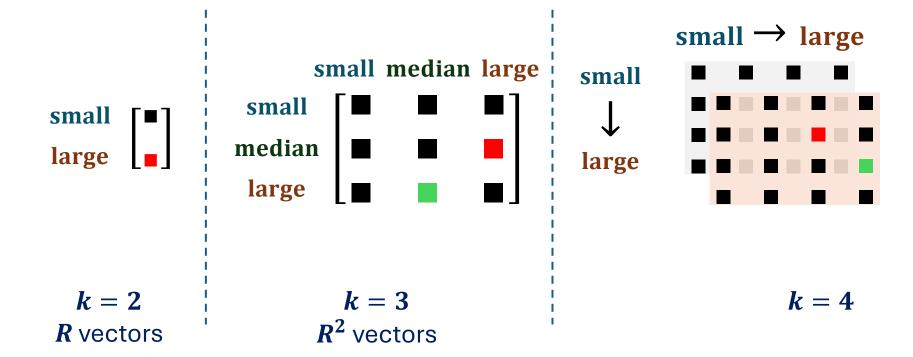
Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).

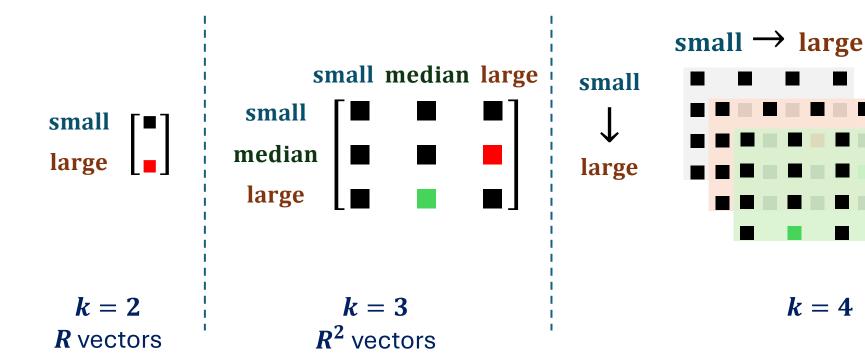


Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).



Linear dependence of **R** vectors using coeffs $\pm B$



Def (reducible vector).

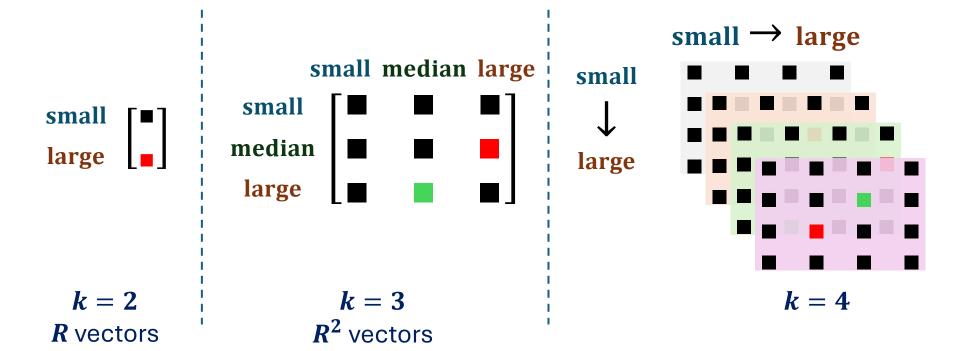
 \boldsymbol{u} is reducible if for any $-\boldsymbol{B} \leq \boldsymbol{c} \leq \boldsymbol{B}$,

using coeffs in $\pm B/k$

 $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors

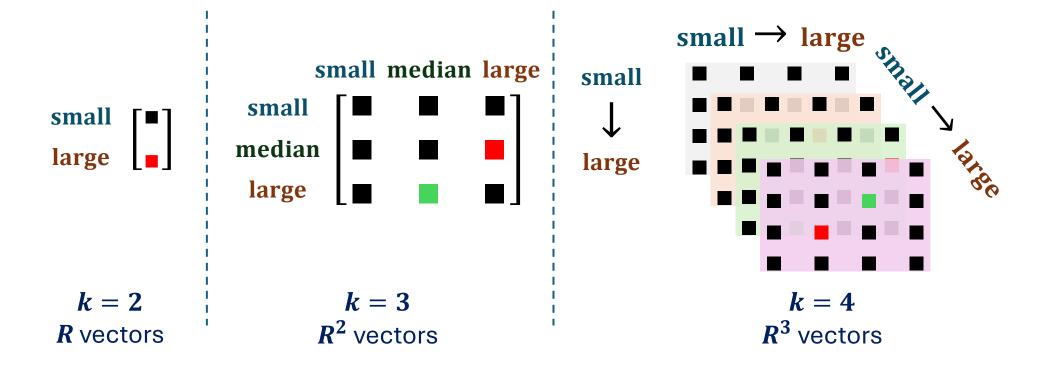
Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).



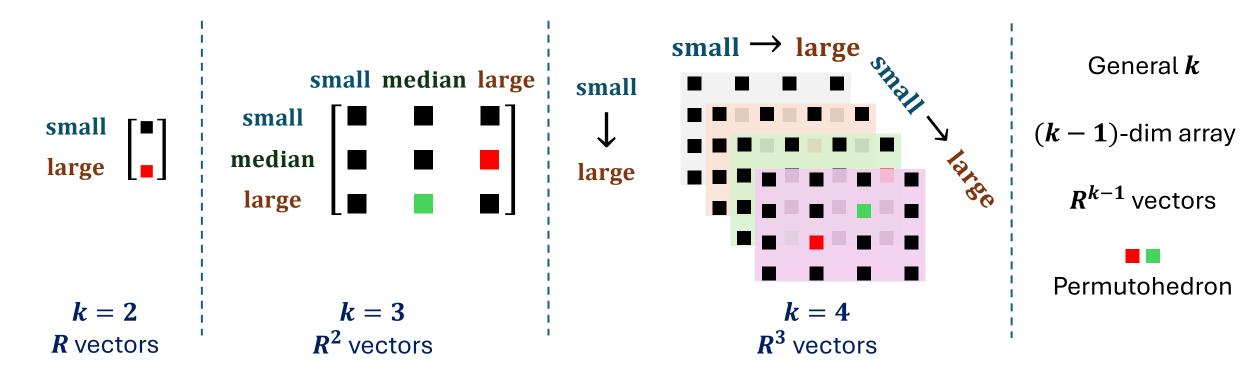
Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).



Linear dependence of R vectors using coeffs $\pm B$

Def (reducible vector).



Algorithm overview

Fⁿ₃-Subset-Sum Reducible vector

The SIS[∞] problem
Weight reduction

The A-SIS problem
General reduction

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in \boldsymbol{A}

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

```
m{u} is reducible if for any -B \leq c \leq B, m{c} \cdot m{u} is a linear comb of the given vectors using coeffs in \pm B/3
```

small median large

small
$$\begin{bmatrix} a & b & t \\ d & e & f \\ d & d & e \end{bmatrix} = \vec{0}$$

large $\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix}$

small $0 \sim B/3$ median $B/3 \sim 2B/3$ large $2B/3 \sim B$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small
$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$$

large $\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$

large $2B/3 \sim B$

$$u = f - h$$
 is reducible

For example, if c is large, then $c \cdot u$

$$= -\operatorname{small} \cdot d + \operatorname{small} \cdot b$$

$$+ (\operatorname{median} - \operatorname{median}) \cdot e$$

$$+ (c - \operatorname{large}) \cdot f + (\operatorname{large} - c) \cdot h$$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small
$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$$

large $\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$
 $= \vec{0}$

$$u = f - h$$
 is reducible

For example, if c is large, then

$$c \cdot u$$

= $-\text{small} \cdot d + \text{small} \cdot b$
+ $(\text{median} - \text{median}) \cdot e$
+ $(c - \text{large}) \cdot f + (\text{large} - c) \cdot h$

has coeffs in

- +small
- median median
- large large

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $-B \le c \le B$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in $\pm B/3$

small median large

small
$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$$

large $\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$
 $= \vec{0}$

$$u = f - h$$
 is reducible

For example, if c is large, then

$$= -\text{small} \cdot d + \text{small} \cdot b$$

$$+ (\text{median} - \text{median}) \cdot e$$

$$+ (c - \text{large}) \cdot f + (\text{large} - c) \cdot h$$

has coeffs in

• ±small

 $C \cdot u$

- median median
- large large

 \rightarrow All in $\pm B/3$

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $c \in \pm (small \cup median \cup large)$, $\boldsymbol{c} \cdot \boldsymbol{u}$ is a linear comb of the given vectors using coeffs in ±small ∪ (median – median) ∪ (large – large)

small median large

small
$$\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$$

large $\begin{bmatrix} a & b & t \\ d & e & f \\ g & h & i \end{bmatrix} = \vec{0}$
 $= \vec{0}$

$$u = f - h$$
 is reducible

For example, if c is large, then $c \cdot u$

$$= -\operatorname{small} \cdot d + \operatorname{small} \cdot b$$

$$+ (\operatorname{median} - \operatorname{median}) \cdot e$$

$$+ (c - \operatorname{large}) \cdot f + (\operatorname{large} - c) \cdot h$$

has coeffs in

- ±small
- median median
- large large

 \rightarrow All in $\pm B/3$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $c \in \pm (H_0 \cup H_1 \cup H_2)$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm H_0 \cup (H_1 - H_1) \cup (H_2 - H_2)$

$$\begin{vmatrix}
H_0 & H_1 & H_2 \\
H_0 & \begin{bmatrix} a & b & t \\
d & e & f \\
H_2 & \begin{bmatrix} g & h & i \end{bmatrix} = \vec{0}
\end{vmatrix}$$

$$= \vec{0}$$

u = f - h is reducible

For example, if c is in H_2 , then

$$c \cdot u$$

$$= -H_0 \cdot d + H_0 \cdot b$$

$$+ (H_1 - H_1) \cdot e$$

$$+ (c - H_2) \cdot f + (H_2 - c) \cdot h$$

has coeffs in

•
$$\pm H_0$$

•
$$H_1 - H_1$$

•
$$H_2-H_2$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

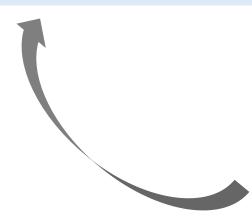
Output: linear dependence using coeffs in A

Def (reducible vector).

u is reducible if for any $c \in \pm (H_0 \cup H_1 \cup H_2)$, $c \cdot u$ is a linear comb of the given vectors using coeffs in $\pm H_0 \cup (H_1 - H_1) \cup (H_2 - H_2)$

$$\begin{bmatrix}
 H_0 & H_1 & H_2 \\
 H_0 & \begin{bmatrix} a & b & t \\
 d & e & f \\
 g & h & i \end{bmatrix} = \vec{0}$$

$$= \vec{0}$$



u = f - h is reducible

For example, if c is in H_2 , then

$$c \cdot u$$

$$= -H_0 \cdot d + H_0 \cdot b$$

$$+ (H_1 - H_1) \cdot e$$

$$+ (c - H_2) \cdot f + (H_2 - c) \cdot h$$

has coeffs in

- $\pm H_0$
- $H_1 H_1$
- H_2-H_2

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

```
u is reducible if for any c \in \pm (H_0 \cup H_1 \cup H_2), c \cdot u is a linear comb of the given vectors using coeffs in \pm H_0 \cup (H_1 - H_1) \cup (H_2 - H_2)
```

Theorem.

If m = R suffices for $A = \pm (H_0 \cup H_1 \cup H_2)$, then reducible vector exists given R^2 vectors

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

```
u is reducible if for any c \in \pm (H_0 \cup H_1 \cup H_2), c \cdot u is a linear comb of the given vectors using coeffs in \pm H_0 \cup (H_1 - H_1) \cup (H_2 - H_2)
```

Theorem.

If m=R suffices for $A=\pm(H_0\cup H_1\cup H_2)$, then reducible vector exists given R^2 vectors

Therefore $m=R^3$ suffices for $A=\pm H_0\cup (H_1-H_1)\cup (H_2-H_2)$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Def (reducible vector).

```
u is reducible if for any c \in \pm (H_0 \cup H_1 \cup \cdots \cup H_k), c \cdot u is a linear comb of the given vectors using coeffs in \pm H_0 \cup (H_1 - H_1) \cup \cdots \cup (H_k - H_k)
```

Theorem.

If m=R suffices for $A=\pm(H_0\cup H_1\cup\cdots\cup H_k)$, then reducible vector exists given R^k vectors

Therefore $m=R^{k+1}$ suffices for $A=\pm H_0\cup (H_1-H_1)\cup \cdots \cup (H_k-H_k)$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Theorem.

```
If m=R suffices for A=\pm(H_0\cup H_1\cup\cdots\cup H_k), then m=R^{k+1} suffices for A=\pm H_0\cup (H_1-H_1)\cup\cdots\cup (H_k-H_k)
```

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Theorem.

```
If m=R suffices for A=\pm(H_0\cup H_1\cup\cdots\cup H_k), then m=R^{k+1} suffices for A=\pm H_0\cup (H_1-H_1)\cup\cdots\cup (H_k-H_k)
```

Fact. If $A = \mathbf{F}_p$, then m = n + 1 suffices

Input: v_1 , ..., $v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Theorem.

```
If m=R suffices for A=\pm(H_0\cup H_1\cup\cdots\cup H_k), then m=R^{k+1} suffices for A=\pm H_0\cup (H_1-H_1)\cup\cdots\cup (H_k-H_k)
```

Fact. If $A = \mathbf{F}_p$, then m = n + 1 suffices

Partition $\mathbf{F}_p = \pm (H_0 \cup H_1 \cup \cdots \cup H_k)$ to obtain general A

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Theorem.

If m=R suffices for $A=\pm(H_0\cup H_1\cup\cdots\cup H_k)$, then $m=R^{k+1}$ suffices for $A=\pm H_0\cup (H_1-H_1)\cup\cdots\cup (H_k-H_k)$

Fact. If $A = \mathbf{F}_p$, then m = n + 1 suffices

Partition $\mathbf{F}_p = \pm (H_0 \cup H_1 \cup \cdots \cup H_k)$ to obtain general A

Example.

$$\begin{aligned} p &= \mathbf{11} \text{ and } \mathbf{F}_p = \{\mathbf{0}, \pm \mathbf{1}, \pm \mathbf{2}, \pm \mathbf{3}, \pm \mathbf{4}, \pm \mathbf{5}\} \\ H_0 &= \{\mathbf{0}, \mathbf{3}, \mathbf{4}, \mathbf{5}\}, H_1 = \{\mathbf{1}\}, \text{ and } H_2 = \{\mathbf{2}\} \end{aligned}$$

Input: $v_1, ..., v_m \in \mathbf{F}_p^n$ and $A \subseteq \mathbf{F}_p$

Output: linear dependence using coeffs in A

Theorem.

If m=R suffices for $A=\pm(H_0\cup H_1\cup\cdots\cup H_k)$, then $m=R^{k+1}$ suffices for $A=\pm H_0\cup (H_1-H_1)\cup\cdots\cup (H_k-H_k)$

Fact. If $A = \mathbf{F}_p$, then m = n + 1 suffices

Partition $\mathbf{F}_p = \pm (H_0 \cup H_1 \cup \cdots \cup H_k)$ to obtain general A

Example.

$$p={f 11}$$
 and ${f F}_p=\{{f 0},\pm{f 1},\pm{f 2},\pm{f 3},\pm{f 4},\pm{f 5}\}$ ${m H}_{f 0}=\{{f 0},{f 3},{f 4},{f 5}\}, {m H}_{f 1}=\{{f 1}\},$ and ${m H}_{f 2}=\{{f 2}\}$

Then
$$A = \{0, \pm 3, \pm 4, \pm 5\}$$

And $m \approx n^3$ suffices

Classical algorithms matching/improving previous quantum algorithms on Short-Integer-Solution-related problem

```
\mathbf{F_3}^n-Subset-Sum SIS^{\infty} A-SIS
```

Classical algorithms matching/improving previous quantum algorithms on Short-Integer-Solution-related problem

```
\mathbf{F_3}^n-Subset-Sum \mathrm{SIS}^{\infty} A-SIS
```

No quantum speedup for these problems anymore

Classical algorithms matching/improving previous quantum algorithms on Short-Integer-Solution-related problem

```
\mathsf{F}_3^n-Subset-Sum \mathsf{SIS}^\infty We do not break any crypto assumption A\text{-SIS}
```

No quantum speedup for these problems anymore

Classical algorithms matching/improving previous quantum algorithms on Short-Integer-Solution-related problem

```
F_3^n-Subset-Sum SIS^\infty We do not break any crypto assumption A-SIS
```

No quantum speedup for these problems anymore

Candidate quantum speedup still exists for quantum algorithms similarly based on Regev's reduction

Classical algorithms matching/improving previous quantum algorithms on Short-Integer-Solution-related problem

```
F_3^n-Subset-Sum SIS^\infty We do not break any crypto assumption A-SIS
```

No quantum speedup for these problems anymore

Candidate quantum speedup still exists for quantum algorithms similarly based on Regev's reduction

Thank you!