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A toy SIS™ problem

Given vectors in F3', efficiently find a nonempty subset of them that
sums to zero

F3'-Subset-Sum
Input: v4, ..., v, € F3'

Output: @ # S S [m] or L

Condition: };cqV; = O0mod 3 ornosuchS

Only allow 0, 1 as coefficients
2 is not allowed
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F3'-Subset-Sum landscape

Input: vy, ..., v, € F3

Output: @ # S € [m] or L such that ¥;cv; = 0 mod 3

9
Harder j\
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n n-++yn 2n n“/3 n-/2
Learning- Total-Search Classical Quantum polytime
NP-hard  \priih-Error (ho 1) polytime (Chen-Liu-Zhandry’21)

(Arora-Ge’11) (new)

Classical polytime
(lvanyos-Sanselma-Santha’07)

Easier
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Warmup for the SIS®™ problem
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The SIS®™ problem

Input: v4, ...,V € Fl’,‘ andh > 1

Output: ¢4, ..., €¢,, Such that each

Example.

where p is a prime

[ — )
lc;] < hand ] c;v; = 0 mod p

\Short-lntege Solution

Given m vectors in F{4, find linear dependence where
all coeffs c; are between +5.
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The SIS®™ problem

Input: v4, ..., v, EFyandh =1  wherepisaprime

Output: ¢y, ..., C,y, such that each |¢;| < hand Y ¢;v; = 0 mod p

Remark.

p = 2 or 3: trivial
h = |p/2]: trivial

Smaller his a harder problem
h = 1, allowing coeffs {—1,0,+1}: Collision in linear hash

V € F;*™ defines a linear hash x € {0,1}™ - Vx € F}
Vx=Vx" iff V(x—x')=0 iff Vc=0



The SIS®™ problem

Input: v4, ..., v, EFyandh =1  wherepisaprime
Output: ¢y, ..., C,y, such that each |¢;| < hand Y ¢;v; = 0 mod p
Remark.

e p =2 or3:trivial
h = |p/2]: trivial

Smaller his a harder problem
h = 1, allowing coeffs {—1,0,+1}: Collision in linear hash

« m = (p—1)n+ 1:solution always exists
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The SIS®™ problem

Input: v4, ..., v, EFyandh =1  wherepisaprime

Output: ¢y, ..., C,y, such that each |¢;| < hand Y ¢;v; = 0 mod p

Cryptography motivation.
e Ourfocus: m >» n?, many solutions exist, find one
« Learning-With-Error setting: m = n + n1/¢, a (unique) solution planted, find it

* CRYSTALS-Dilithium signature scheme:
Assumen = 1280, m = 2304, p ~ 223, h ~ p/8, random {v;} is hard
In general, assumem = 1.9n,p > n, h = p/8, random {v;} is hard

m ~ nlogn, p ~ n*logn, h = 0(1), random {v;} is hard,
based on worst-case hardness of lattice problems [Ajtai’96, Micciancio-Regev’04]
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The SIS®™ problem

Input: v4, ..., v, EFyandh =1  wherepisaprime

Output: ¢4, ..., ¢,, such that each |¢;| < hand ), c;v; = 0 mod p

Theorem (Chen-Liu-Zhandry’21). Theorem (Imran-lvanyos’25).
Assume k is odd constant and Assume k is a power of two and

m >» p*nk m > pklogkpk
Quantum polytime algorithm for Classical polytime algorithm for

— k p
h = pT Theorem (New). h = 2k
Assume k is any constant and
m > nk

Classical polytime algorithm for

h > £ Runsin poly(n,logp) time
— 2k Allows p = exp(poly(n))
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S EERLEN Wi EEEGIn Why is this dequantization interesting?
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Toy example: F3'-Subset-Sum
Motivations

Main problem: the SIS® problem
Cryptographic motivation

Full generalization: the A-SIS problem
Quantum motivation
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Algorithm overview

F3'-Subset-Sum
Reducible vector

The SIS™ problem
Weight reduction

The A-SIS problem

General reduction
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F:?-Su bset-Sum wheneverm > n + logn
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Claim.
Linear dependence exists with |[T| = 2n/3

F:;I'SU bset-Sum wheneverm > n + logn

V4, ..,V Y -Yr for k=Ilogn

Basis change 1

In expectation z = }}; «;z; has
€1, .-.,€n Z1, .-, Z

at most 2n/3 nonzero entries

l Random linear comb Derandom and exclude
with aq, ..., Ay € F3 - — —_
a,=-=a,=0
Use = 2n/3 of them Some explicit nontrivial z = }}; &;z; has
to produce —z 2n/3 :
P at most 1_3/_k ~ 2n/3 nonzero entries

Linear dependence using = 2n/3 + k = 2n/3 vectors
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Open problem on F3'-Subset-Sum

Given m ~ n'% vectors in F}, we can efficiently find linear

dependence thatuses only R = 2n/3 vectors

Is R << 2n /3 possible?
R = n/lognis possible, ignoring efficiency

Givenm ~ n'’’ vectors in F}!, we can efficiently find linear

dependence that uses only R = n/2 vectors

Is R << n/2 possible?
R = n/lognis possible, ignoring efficiency




Algorithm overview

F3'-Subset-Sum
Reducible vector

( )
The SIS™ problem
Weight reduction

The A-SIS problem

General reduction
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The SIS® problem

Input: v4, ...,V € FI’,‘

Dimension reduction

Output: linear dependence using coeffs in +h and
exploring sparsity
Fact.If h = p/2,thenm = n + 1 suffices A Ry

Lemma (weight halving).
If m = R suffices for h = B, then m = R? suffices for h = B/2

Theorem (Imran-lvanyos’25). Proof. |
. . o
Assume k is a power of two and By induction on k = 2
m > Wnk Base caseisi =0and h = g
Classical polytime algorithm for Thenm = n + 1 suffices
h = P Since m = (n + 1)¥ suffices for h = Zlik
2k m = (n + 1)?k suffices for h = P

4k
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If m = R sufficesforh = B,
then m = R? suffices forh = B/2

The SIS®™ problem

Input: v4, ...,V € FI’,‘
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Compute reduciblg vector u® in each batch
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Def (reducible vector).
u® is reducible if forany —B < ¢ < B,

The SIS &0 prOblem c - u is a linear comb of vectors in batch i

. using coeffsin +B /2
Input: v4, ...,V € FI’,‘

Output: linear dependence using coeffs in +h

Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

(D) @ _ QR
(D) (D) — Civy + -+ cpvyp =0
V1 VR where —B < ¢;< B not all-0
Since m = R sufficesforh = B ‘

—
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The SIS®™ problem

Input: v, ...,
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Def (reducible vector).

u® is reducible if forany —B < ¢ < B,

c - u® is a linear comb of vectors in batch i
using coeffsin +B /2
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Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

1-Ty+2-Ty++B-Tg=0

where Ts = 2. cj=s ](l) + 2. cj= S—v](.l)
Coeffs +1
A

Define u®

4 A\
=Tpj2 +Tpj241 + -+ 1Tp

0<c<B/2
c-u(i){ sc=B/

has coeffs +¢c € +B/2



Def (reducible vector).
u'” isreducible ifforany—B < c < B
o) : ,
The SIS prOblem c - u is a linear comb of vectors in batch i

. using coeffs in +B /2
Input: v4, ...,V € FI’,‘

Output: linear dependence using coeffs in +h

Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

0<c<B/2 VY
c-u(i){ sc=B/

1-T{+2-T,++B-Tp=0
1 2 B B/2<c<B

where Ts = 2j.c.=s ](l) + Ljec;= S—v](.l)

Define u(‘) = TB/Z + TB/2+1 + -+ TB



Def (reducible vector).
u'” isreducible ifforany—B < c < B
o) : ,
The SIS prOblem c - u is a linear comb of vectors in batch i

. using coeffs in +B /2
Input: v4, ...,V € FI’,‘

Output: linear dependence using coeffs in +h

Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

0<c<B/2 VY
c-u(i){ sc=B/

1-T{+2-T,++B-Tp=0
1 2 B B/2<c<B

where Ts = 2j.c.=s ](l) + Ljec;= S—v](.l)

=c-u®—-1-T;+2-T,+-+B-Tg)

Define u(‘) = TB/Z + TB/2+1 + -+ TB



Def (reducible vector).
u'” isreducible ifforany—B < c < B
o) : ,
The SIS prOblem c - u is a linear comb of vectors in batch i

. using coeffs in +B /2
Input: v4, ...,V € FI’,‘

Output: linear dependence using coeffs in +h

Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

0<c<B/2 VY
c-u(i){ sc=B/

1-T{+2-T,++B-Tp=0
1 2 B B/2<c<B

where Ts = 2j.c.=s ](l)+21c] S—v](.l) |
=c-u®—-1-T;+2-T,+-+B-Tg)

= 2s<B/2(=5) " Ts+ Xgop/2(c—5) - T

Define u(‘) = TB/Z + TB/2+1 + -+ TB



The SIS®™ problem

Input: v, ...,

Vm € Fy

Def (reducible vector).

u® is reducible if forany —B < ¢ < B,

c - u® is a linear comb of vectors in batch i
using coeffsin +B /2

Output: linear dependence using coeffs in +h

Partition R? vectors into R batches of R vectors
Compute reducible vector u® in each batch

1-Ty+2-Ty++B-Tg=0

where Ts = 2. cj=s ](l) + 2. cj= S—v](.l)
Define u(‘) = TB/Z + TB/2+1 + .-+ TB

(r0<c<Bi2 VY
c-u(‘){
B/2<c<B

=c-u¥ - (1-T{+2-Ty++B-Tg)
— ZS<B/2(_S) T + ZSZB/Z(C —s) T
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Def (reducible vector).
u'” isreducible ifforany—B < c < B
o) : ,
The SIS prOblem c - u is a linear comb of vectors in batch i

. using coeffs in +B /2
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e+ + gl =0
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The SIS®™ problem

Input: v4, ...,V € FI’,‘
Output: linear dependence using coeffs in +h

Lemma (weight halving).
If m = R suffices for h = B, then m = R? suffices forh = B/2

Lemma (iterative halving).
If m = R suffices for h = B, then m = R?' suffices for h = B/2t

How about dividing 3 ?
Do we have to pay m = R* and get the stronger h = B/4 ?
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0
c:< B notall-0

C1V1 + -+ CRVp —
V1, ..., VR S -

where —B

S~

Since m = R sufficesforh = B ‘

where T, = Z]-:cjzs v + Zj:c]:—s —Vj



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

C1V1 + -4 CRVR = 6
V1, VR . where —B < Ci< B not all-0
Since m = R sufficesforh = B ‘
0  =Yp;3sTs 1-Ty+2-Ty++B-Tg=0

T ZB/3SS<ZB/3 s T - where T = Zj:cjzs vj + Zj:c]:—s —V;j
+2s>28/35 " Ts



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ 25223/3 s-Ts

Each T is a disjoint
signed-subset-sum of v ..., Vp



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ ZSZZB/B s-Ts

Dvers™

s<B/3

X = z Ts
B/3<s<2B/3

2verns™
s=22B/3

Each T is a disjoint
signed-subset-sum of v ..., Vp




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ ZSZZB/B s-Ts

Z T Small
s<B/3

X = Z Ts Median
B/3<s<2B/3

Z T, Large
s=22B/3 1

Each T is a disjoint
signed-subset-sum of v ..., Vp




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ ZSZZB/B s-Ts

Each T is a disjoint
signed-subset-sum of v ..., Vp

2 T, Small X is avectorin Fg"
s<B/3

X = Z Ts Median
B/3<s<2B/3

Z T, Large
s=22B/3 1




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ ZSZZB/B s-Ts

Each T is a disjoint
signed-subset-sum of v ..., Vp

2 T, Small x is a vector in Fp"
s<B/3
Expand x in terms of +vq ..., Tvp
X = Z Ts| Median
B/3<s<2B/3
Z T, Large
s=22B/3 1




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

0 — ZS<B/3 s-Ts
+2.B/3<s<2B/3S " T
+ ZSZZB/B s-Ts

Z T Small

s<B/3

X = Z Ts Median
B/3<s<2B/3

Z T, Large
s=22B/3 1

Each T is a disjoint
signed-subset-sum of v ..., Vp

x is a vectorin Fg"

Expand x in terms of +v4 ..., vz and combine

* Small ones with small coeffs0 ~ B/3

* Median ones with median coeffs B/3 ~ 2B/3
* Large ones with large coeffs2B/3 ~ B

We obtain(_f




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

V1, .., VR Xsmall XMedian, XLarge@r€ disjoint signed-subset-sums
l Expand in terms of +v4 ..., vz and combine
] ) * Xgman Ones with small coeffs0 ~ B/3
Xsmall * XMedian ONE€S With median coeffs B/3 ~ 2B/3
x = | XMedian * Xparge orles with large coeffs2B/3 ~ B
XLarge We obtain 0




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

WO oD o@D o, p®

! ! !

x(l) x(z) x(R)



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

WO oD o@D o, p®

! ! !

x(l) x(z) x(R)

\ J
Y Linear dependence of

clx(l) + ..o 4 cRx(R) — 6 R vectors using coeffs +B
where —B < Ci< B not all-0




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

Clx(l) _|_ _|_ cRx(R) — 6

where —B < Ci< B not all-0



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

1-xD — (B/4) - x® + (B/2) - x® + (5B/6) - x(7 =0



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

1-xD - (B/4)-x® + (B/2) - x® + (5B/6) - x( =0
N\ AN J J
N N N

Small coeffs Median coeffs Large coeffs
0~B/3 B/3 ~2B/3 2B/3 ~ B




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

1-xD - (B/4)-x® + (B/2) - x® + (5B/6) - x( =0

NG J J J
Y Y Y
Small coeffs Median coeffs Large coeffs
I I 0~B/3 B/3 ~2B/3 2B/3 ~ B
XSmall / / / /
XMedian

X Large



The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

1-xD - (B/4)-x® + (B/2) - x® + (5B/6) - x( =0

NG VAN J J
Y Y
Small coeffs Median coeffs Large coeffs
Xsrmall 0~ B/3 B/3 ~ 2B/3 2B/3 ~ B
XMedian " ‘ ‘
XLarge (D) (2) (4) (7) ]
] ] Xsmall — *Small XSmall XSmall
(1) _ (2) (4) (7)
xMedian xMedian xMedian xMedian
L (@2) (4) (7)
i X Large X Large X Large X Large |




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

M =

=~ 0 O

Q@ a8

-
4
l_

(D)

(2) (4) (7)
Xsmall — Xsmall Xsmall Xsmall
(2) (4) (7)

xMedian_xMedian xMedian xMedian

i xLarge o xLarge xLarge xLarge 1

(2) (4) (7)




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

i [ @ (2) (4) (7) 7
a b t Xsmall ~ Xsmall  *small  *small
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
9 l (1) (2) (4) (7)
] ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

i [ @ (2) (4) (7) 7
a b t Xsmall ~ Xsmall  *small  *small
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
9 l (1) (2) (4) (7)
] ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2
Every row of M sums to 0 with proper small, median, large weights




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2
Every row of M sums to 0 with proper small, median, large weights

1-x® —(B/4) - x® + (B/2) - x® + (5B/6) - x(D =0



The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2
Every row of M sums to 0 with proper small, median, large weights

1-x® —(B/4) - x® + (B/2) - x® + (5B/6) - x(D =0

g

XSmall
XMedian
X Large

|



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights
1-x® —(B/4) - x® + (B/2) - x® + (5B/6) - x(D =0

(7)) _ @
* Xgman = 0

XSmall
X = |XMedian
X Large

+ (B/2) P

Small

— (B/4) - x&

Small

1. D

Small

+ (5B/6)



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights

(7)

+(B/2) -xY 4+ (5B/6)-x\) =0

1 2
1-x)  —(B/4)-x3

Small



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights

(7)

1 2 n
120 —(B/4) x? 2D =0

Small\ mall + (5B/6)

a b t

Small

+(B/2) - x¥
4



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights

(1) (2) (4) (7)) _ @
W\auifﬂ‘x mall T (13 /2) - ;‘small wamall =0

small-a median-b large-t



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

_ - [ @ (2) (4) (7) 7
[(Ta b ¢]] | *smanl ~*sman  ¥sman  Xsmal
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
l (1) (2) (4) (7)
'g ] i xLarge B xLarge xLarge xLarge |

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every row of M sums to 0 with proper small, median, large weights

(1) (2) (4) (7)) _ @
W\auifﬂ‘x mall T (13 /2) - ;‘small j(/sfzg)/'xmau =0

small - a + median- b + large -t =0



The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

i [ @ (2) (4) (7) 7
a b t Xsmall ~ Xsmall  *small  *small
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
9 l (1) (2) (4) (7)
] ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every column of M sums to 0 with proper small, median, large weights




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

— - L@ _ (2 (4) (7) 7
a| b t Xsmall ~ Xsmall  *small  *small
— — |+ _ (2) (4) (7)
M=|d| e f = |*Median ~— *Median *Median “*Median
gl h i XD @ @ £
] | “"Large Large Large Large _

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every column of M sums to 0 with proper small, median, large weights




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

— - L@ _ (2 (4) (7) 7
a| b t Xsmall ~ Xsmall  *small  *small
— — |+ _ (2) (4) (7)
M=|d| e f = |*Median ~— *Median *Median “*Median
gl h i XD @ @ £
] | “"Large Large Large Large _

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every column of M sums to 0 with proper small, median, large weights

F (1)
Xsmall

[ (2)
X Small

x(D =

(1)
X Median

(1)

| X Large |

(2)
xMedian

(2)

| xLarge ]

— @



Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

The SIS®™ problem

Construct reducible vector u in vy, ..., Vp2

— - L@ _ (2 (4) (7) 7
a| b t Xsmall ~ Xsmall  *small  *small
— — |+ _ (2) (4) (7)
M=|d| e f = |*Median ~— *Median *Median “*Median
gl h i XD @ @ £
] | “"Large Large Large Large _

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2
Every column of M sums to 0 with proper small, median, large weights

F (D " (2)
xSmall a xSmall
1) _ |.(D (2) _
x( ) = xMedian d xMedian — x(Z)
(1) (2)
| X Large | g | xLarge ]




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS 0 prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

— - L@ _ (2 (4) (7) 7
a| b t Xsmall ~ Xsmall  *small  *small
— — |+ _ (2) (4) (7)
M=|d| e f = |*Median ~— *Median *Median “*Median
gl h i XD @ @ £
] | “"Large Large Large Large _

Observation.
Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2

Every column of M sums to 0 with proper small, median, large weights

(D (2)

X Small a X Small
1) _ |.@D (2) _ (2
X — xMedian d xMedian - x( )

(1) (2)
| X Large g X Large |



The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

i [ @ (2) (4) (7) 7
a b t Xsmall ~ Xsmall  *small  *small
_ _ | @D (2) (4) (7)
M=|d Z f = |*Median ~— *Median *Median “*Median
9 l (1) (2) (4) (7)
] ] i xLarge B xLarge xLarge xLarge |

Observation.

Every entry of M is a disjoint signed-subset-sum of vq, ..., Vp2
Every row of M sums to 0 with proper small, median, large weights
Every column of M sums to 0 with proper small, median, large weights




Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

>

Q QUK
~ 0 O
o~ Sy e




The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

small median large

a b t

d e f

g h i
Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

>



Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

>

small’ _a b t—
median’ |d e f
large’ | g h i
=0
Small0 ~ B/3

Median B/3 ~ 2B/3
Large 2B/3 ~ B
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

\
|
|
|
I
|
|
|
I
|
|
|
I
I

>
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

renmmmmmm / u=f-h

small median large

small’ _a b t i
median’ |d e f — (_)>i

large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3
Median B/3 ~ 2B/3
Large 2B/3 ~ B
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

— o e o o e e o

/ u=f—nh

0<c<B/3(smallc)
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

/ u=f—h

0<c<B/3(smallc)
c - uhascoeffsin+c € +B/3

— o e o o e e o
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

/ u=f—h

0<c<B/3(smallc)Vv
B/3 < ¢ <£2B/3 (median ¢)
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS® prOblem c - uis a linear comb of the given vectors

using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2
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ﬁ
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS® prOblem c - uis a linear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

renmmmmmm / u=f-h

small median large

small' |q b t
median’ |d e f =0
large’ h i

0<c<B/3(smallc)Vv
B/3 < ¢ <£2B/3 (median ¢)

cC-u
=c-f— (small-t+ median’ - f + large’ - i)

— o e o o e e o
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Small0 ~ B/3
Median B/3 ~ 2B/3
Large 2B/3 ~ B
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS® prOblem c - uis a linear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

renmmmmmm / u=f-h

small median large

0<c<B/3(smallc)Vv
B/3 < ¢ <£2B/3 (median ¢)

H

small' |qg b |t i
median’ |d e f — (_)>i

large’ h|i l

c-u
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N [ - —c - h+ (small - g + median - h + large - i)
Small0 ~ B/3
Median B/3 ~ 2B/3 + o h

Large 2B/3 ~ B + L
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large
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large’ | g h i
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Median B/3 ~ 2B/3

Large 2B/3 ~ B

/ u=f—h
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors

using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

small’ [ a b t
median’ |d e f
large’ | g h i

------------------------- / u=f-h

small median large
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1

I

I

I

I

I
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I

I

I

I

I

1

B/3 < ¢ <£2B/3 (median ¢)
c-u
; =c-f—(small'-t+ median’- f + large’ - i)
........................ - —c - h+ (small - g + median - h + large - i)
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Median B/3 ~ 2B/3

Large 2B/3 ~ B
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+(large — large’) - i
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

/ u=f—h

smalll [ a

‘b
median’ [ d|e
L

large’ |{

—————————————————————————

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

\
|
|
|
I
|
|
|
I
|
|
|
I
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B/3 < ¢ < 2B/3 (median c¢) v
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e
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Median B/3 ~ 2B/3
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The SIS®™ problem

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

c - uis alinear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

—————————————————————————

small median large

small’ [ a b t
median’ |d e f
large’ | g h i

o o o e e e e o e e e e e e e e o e

Small0 ~ B/3

Median B/3 ~ 2B/3

Large 2B/3 ~ B

/ u=f—h

0<c<B/3(smallc)Vv
B/3 < ¢ < 2B/3 (median c¢) v

2B/3 < c¢ < B (Large ¢)
c-u
! =c-f—(small -d+ median - e + large : f)
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|
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors

using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

small median large
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median’ |d e f = 6
large’ | g h i
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Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS > prOblem c - uis alinear comb of the given vectors

using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

small median large

small’ [ a b t
median’ |d e f = 6
large’ | g h i

o o o e e e e o e e e e e e e e o e

/ u=f—h
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B/3 < |c| < 2B/3 (medianc) v
2B/3 < |c| < B (Largec) Vv

\
|
|
|
I
|
|
|
I
|
|
|
I
I



P e e

Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS® prOblem c - uis a linear comb of the given vectors

using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

- o e e e e e

—————

small median large

small [q B t

median' |d e f

large’ | g h i
=0

o o o e e e e e e e e o e e

—— o —

, \

/ u=f—h

0<|c|]|<B/3(smallc)v
B/3 < |c| < 2B/3 (medianc) v
2B/3 < |c| < B (Largec) Vv

\
|
|
|
I
|
|
|
I
|
|
|
I
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large’ _g h i_
R Y \

Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS &0 prOblem c - uis a linear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2
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small median large
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are empty?
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large’ _g h i_
R Y \

Def (reducible vector).
u is reducible if forany —B < ¢ < B,

The SIS &0 prOblem c - uis a linear comb of the given vectors
using coeffsin +B/3

Construct reducible vector u in vy, ..., Vp2

S / u=f—-nh

small median large

small’ -Cl b t
median’ |d e f — 6

0<|c|]|<B/3(smallc)v
B/3 < |c| < 2B/3 (medianc) v
2B/3 < |c| < B (Largec) Vv

u is reducible
What if f and h

.
are empty: Need to change the base algorithm slightly

o ensure nonemptiness
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The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k
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small [ u ]
large |m

k=2
R vectors

Linear dependence of
R vectors using coeffs =B

small

small median large
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large

k=3
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Def (reducible vector).
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c - uis alinear comb of the given vectors
using coeffsin £B/k



The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k

small — large

i small median large i small HE B EH =
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[ ] ! ds : E E E ®
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The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k

small — large

small median large 1 ¢ a11 HE E B =

small m . small [ H ]| | l EE §E E &
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The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k

small — large

small median large 1 ¢ a11 HE E B =

small [m . small [ W H| | l EE §E E &
| . I EEE E E ®
large [-] ! median |H N N . large EEE B E =
i large | m M i AEE E E ®m
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k=2 : k=3 : k=4
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The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k

small — large

small H EH H =
J, H B | [ | [ |
EENR [ | | [ |

small median large

small | | M |

small [m
large |m median | B | |

large mEEm m m =
large | W H | EEg wm -
img B B B
HE B E =H
k=2 k=3 k=4

R vectors R? vectors



The SIS®™ problem
Def (reducible vector).

Linear dependence of u is reducible if forany —B < ¢ < B,
R vectors using coeffs +B c - uis alinear comb of the given vectors
using coeffsin £B/k

small — large .

small [ | | [ | | @Q//

J, EE B B B& \‘

small median large

small | | M |

small [ u ]
large |m

i 7
median |®  ® W large mpEEpg m ® = Qﬁ’o
large N | H EEg m - Q@
Em B B =
HE B E ®
k=2 k=3 k=4

R vectors R? vectors R3 vectors



The SIS®™ problem

small [ u ]
large |m

k=2
R vectors

Linear dependence of
R vectors using coeffs =B

small

median | B

large

small median large

H EH B

H B
N |
k=3

R? vectors

small

l

large

Def (reducible vector).
u is reducible if forany —B < ¢ < B,
c - uis alinear comb of the given vectors

using coeffsin £B/k

small — large .

HE B B =& @
EE B B B&
EEE B B =§

EEEg B B

HEpg B

Em B =
HE B B
k=4
R3 vectors

%

General k
(k — 1)-dim array

R*1vectors

]
Permutohedron



Algorithm overview

F3'-Subset-Sum
Reducible vector

The SIS™ problem
Weight reduction

4 )
The A-SIS problem

General reduction
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The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A

Def (reducible vector).

u is reducible if forany —B < ¢ < B,

C-Uuis ? linear comb of the given vectors using coeffs For example, if ¢
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The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A

Def (reducible vector).
u is reducible if forany —B < ¢ < B,
c - uis alinear comb of the given vectors using coeffs For example, if ¢

u = f — hisreducible

is large, then

in+B/3 c-u
______________________ = —small-d + small- b
’ small median large "\ +(median — median) - e
'small [q B ¢t : +(c —large) - f + (large —c¢) - h
I _ ~1 small0 ~ B/3 has coeffs in
imedian ([d e f|=0 | median B/3 ~ 2B/3 . +small
i large |{ h i i large 2B/3 ~ B * median — median

\ -0 , * large — large

——————————————————————
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Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A
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u is reducible if forany —B < ¢ < B,
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The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A

Def (reducible vector).

u is reducible if for any ¢ € +(small U median U large),

C-Uuis ? linear comb of the given vectors using coeffs For example, if ¢
IN +small U (median — median) U (large — large)

u = f — hisreducible

is large, then

c-u
______________________ = —small-d+small-b
’ small median large "\ +(median — median) - e
'small [q B ¢t : +(c —large) - f + (large —c¢) - h
I _ 1 small0 ~ B/3 has coeffs in
' median d e f|=0 i median B/3 ~ 2B/3 . tsmall
i large | g h i i large 2B/3 ~ B * median — median Allin +B/3
' -0 )  large — large

——————————————————————
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Output: linear dependence using coeffsin A
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¢ -uis alinear comb of the given vectors using coeffs  For example, if cisin H,, then

u = f — hisreducible

intHoU (Hy —Hq) U (H; — Hy) c-u
______________________ =—H0'd+H0'b
’ Hy H,; H, N +(H{—Hy) e
" Ho la b t | +(C—H2.)'f+(H2—C)'h
u, |d e f =6§ .hai;;)effsm
i H, (g h i | * Hy —H,y

\ i =(_)> i ; ® HZ_HZ

——————————————————————



The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A
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u is reducible if foranyc € £(HoU H{ U H,),
¢ -uis alinear comb of the given vectors using coeffs  For example, if cisin H,, then
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The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A

Def (reducible vector).

u is reducible if foranyc € £(HoU H{ U H,),

c - uis alinear comb of the given vectors using coeffs
in+Ho U (H; — Hy) U (H, — H3)

Theorem.
If m = R sufficesforA = +(HyU H{ U H,),
then reducible vector exists given R? vectors

Therefore m = R3 sufficesforA = +HyU (H, — Hy) U (H, — H,)
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The A-SIS problem

Input: v4, ...,V € FI’,‘ and A € F,
Output: linear dependence using coeffsin A

Theorem.
If m = R sufficesforA = +(HgUH{U---UH,),
then m = R**1 sufficesforA = +Hy U (Hy — H{) U ---U (H;, — H})

Fact. If A = F,,, thenm = n + 1 suffices Example.

Partition F, = £(HoU Hy U -+~ U Hj) Hy = {0,3,4,5}, H; = {1}, and H; = {2}

to obtain general A

Then A = {0, +3, +4, +5}
And m =~ n3 suffices
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Summary

Classical algorithms matching/improving previous qguantum
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