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Low-deg polys
small decision trees
weakly correlated computations
……
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Random 
input bits

Output 
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𝒓𝒓𝟏𝟏
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟐𝟐
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟑𝟑
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟒𝟒
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟓𝟓
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟔𝟔
∼ 𝟎𝟎,𝟏𝟏 ⋯⋯
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Ex / Non-Ex.
Uniform over 𝟎𝟎,𝟏𝟏 𝒏𝒏

𝟏𝟏/𝟑𝟑-biased distribution
Uniform string of weight 𝒏𝒏/𝟐𝟐
Point distribution on 𝟎𝟎𝒏𝒏
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Natural question on its own
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Computation.
It cannot compute

𝒇𝒇 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏−𝟏𝟏 = 𝒙𝒙𝟏𝟏 ⊕⋯⊕𝒙𝒙𝒏𝒏−𝟏𝟏
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Motivations.
Natural question on its own
Data structure lower bounds [Vio’12, FLRS’23, KOW’24]
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uniform symmetric Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

What distributions can a shallow circuit produce?



uniform symmetric Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Jan 27

What distributions can a shallow circuit produce?



uniform symmetric Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Max Efficiency.
Store 𝒉𝒉 = 𝒙𝒙

𝒔𝒔 = 𝒏𝒏 
𝟏𝟏 bit of 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

What distributions can a shallow circuit produce?



uniform symmetric Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Max Efficiency.
Store 𝒉𝒉 = 𝒙𝒙

𝒔𝒔 = 𝒏𝒏 
𝟏𝟏 bit of 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

What distributions can a shallow circuit produce?



uniform symmetric Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Max Efficiency.
Store 𝒉𝒉 = 𝒙𝒙

𝒔𝒔 = 𝒏𝒏 
𝟏𝟏 bit of 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

Min Storage.
Only ≈ 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟕𝟕 possible 𝒙𝒙

Store 𝒉𝒉 as the index

𝒔𝒔 = 𝐥𝐥𝐥𝐥𝐥𝐥 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟏𝟏 = 𝒏𝒏 − 𝟕𝟕 
Read entire 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

What distributions can a shallow circuit produce?



Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Max Efficiency.
Store 𝒉𝒉 = 𝒙𝒙

𝒔𝒔 = 𝒏𝒏 
𝟏𝟏 bit of 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

Min Storage.
Only ≈ 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟕𝟕 possible 𝒙𝒙

Store 𝒉𝒉 as the index

𝒔𝒔 = 𝐥𝐥𝐥𝐥𝐥𝐥 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟕𝟕 = 𝒏𝒏 − 𝟔𝟔 
Read entire 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

uniform symmetric

What distributions can a shallow circuit produce?



Dictionary Problem.
Given an 𝒏𝒏-bit string 𝒙𝒙 of weight 𝟎𝟎 modulo 𝟏𝟏𝟐𝟐𝟕𝟕
Store it as some 𝒔𝒔-bit string 𝒉𝒉 such that 
 each 𝒙𝒙𝒊𝒊 can be recovered easily from 𝒉𝒉

Max Efficiency.
Store 𝒉𝒉 = 𝒙𝒙

𝒔𝒔 = 𝒏𝒏 
𝟏𝟏 bit of 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

Min Storage.
Only ≈ 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟏𝟏 possible 𝒙𝒙

Store 𝒉𝒉 as the index

𝒔𝒔 = 𝐥𝐥𝐥𝐥𝐥𝐥 𝟐𝟐𝒏𝒏/𝟏𝟏𝟐𝟐𝟕𝟕 = 𝒏𝒏 − 𝟔𝟔 
Read entire 𝒉𝒉 to decode 𝒙𝒙𝒊𝒊

uniform symmetric

Can we achieve both?
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Can we achieve both?
No! [KOW’24]
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Either read 𝝎𝝎 𝟏𝟏  bits of 𝒉𝒉
Or 𝒉𝒉 has length 𝒏𝒏
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Motivations.
Natural question on its own
Data structure lower bounds [Vio’12, FLRS’23, KOW’24]
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Data structure lower bounds [Vio’12, FLRS’23, KOW’24]

Quantum-classical separation [BGK’18, WP’23, KOW’24]

uniform symmetric
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Motivations.
Natural question on its own
Data structure lower bounds [Vio’12, FLRS’23, KOW’24]

Quantum-classical separation [BGK’18, WP’23, KOW’24]

Can quantum shallow circuit generate 
distributions that are classically hard?

uniform symmetric
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Motivations.
Natural question on its own
Data structure lower bounds [Vio’12, FLRS’23, KOW’24]

Quantum-classical separation [BGK’18, WP’23, KOW’24]

Can quantum shallow circuit generate 
distributions that are classically hard?

uniform symmetric

Yes!
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Formal Set-Up

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits
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Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼



Formal Set-Up

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?



Example 1

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros



Example 2

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏𝒏𝒏

ones



Example 3

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏𝒏𝒏

ones

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎𝒏𝒏,𝟏𝟏𝒏𝒏

zeros-or-ones



Example 4

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

evens



Example 4

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

evens

𝒓𝒓𝟏𝟏 ⊕ 𝒓𝒓𝟐𝟐, 𝒓𝒓𝟐𝟐 ⊕ 𝒓𝒓𝟑𝟑, 𝒓𝒓𝟑𝟑 ⊕ 𝒓𝒓𝟒𝟒, … , 𝒓𝒓𝒏𝒏 ⊕ 𝒓𝒓𝟏𝟏



Example 5

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

odds

𝒓𝒓𝟏𝟏 ⊕ 𝒓𝒓𝟐𝟐, 𝒓𝒓𝟐𝟐 ⊕ 𝒓𝒓𝟑𝟑, 𝒓𝒓𝟑𝟑 ⊕ 𝒓𝒓𝟒𝟒, … , 𝒓𝒓𝒏𝒏 ⊕ 𝒓𝒓𝟏𝟏 ⊕ 𝟏𝟏



Example 6

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎,𝟏𝟏 𝒏𝒏

evens-or-odds



Examples

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds



Examples

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds
Uniform over weight ≤ 𝟏𝟏𝟎𝟎 ?
Uniform over weight 𝒏𝒏/𝟐𝟐 ?
Uniform over weight 𝟎𝟎 modulo 𝟑𝟑 ?
……



Examples

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Conjecture [Filmus-Leigh-Riazanov-Sokolov’23]. No other examples
𝒏𝒏 sufficiently large



Our Result

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a local function
 each output bit depends on constant number of input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

When is 𝒇𝒇 𝑼𝑼  uniform symmetric?

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Theorem [KOW’25+]. No other examples
𝒏𝒏 sufficiently large



Robust and Quantitative

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function
 each output bit depends on 𝒅𝒅 input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼



Robust and Quantitative

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function
 each output bit depends on 𝒅𝒅 input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

Theorem [KOW’25+]. 
If 𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution,

then 𝒇𝒇 𝑼𝑼  is 𝑶𝑶𝒅𝒅 𝝐𝝐 -close to one of the following six



Robust and Quantitative

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function
 each output bit depends on 𝒅𝒅 input bits

Define 𝑼𝑼 to be the uniform distribution over 𝟎𝟎,𝟏𝟏 𝒎𝒎

Define 𝒇𝒇(𝑼𝑼) be the output distribution of 𝒇𝒇 under 𝑼𝑼

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Theorem [KOW’25+]. 
If 𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution,

then 𝒇𝒇 𝑼𝑼  is 𝑶𝑶𝒅𝒅 𝝐𝝐 -close to one of the following six

𝒏𝒏 sufficiently large



Takeaway

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏𝒏𝒏

ones

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎𝒏𝒏,𝟏𝟏𝒏𝒏

zeros-or-ones

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

evens

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

odds

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎,𝟏𝟏 𝒏𝒏

evens-or-odds



Takeaway

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏𝒏𝒏

ones

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎𝒏𝒏,𝟏𝟏𝒏𝒏

zeros-or-ones

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

evens

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

odds

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎,𝟏𝟏 𝒏𝒏

evens-or-odds

0-local 0-local 1-local

2-local 2-local 1-local



Takeaway

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎𝒏𝒏

zeros

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏𝒏𝒏

ones

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎𝒏𝒏,𝟏𝟏𝒏𝒏

zeros-or-ones

𝒇𝒇 𝑼𝑼 ≡ 𝟎𝟎 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

evens

𝒇𝒇 𝑼𝑼 ≡ 𝟏𝟏 𝐦𝐦𝐥𝐥𝐦𝐦 𝟐𝟐

odds

𝒇𝒇 𝑼𝑼 ∼ 𝟎𝟎,𝟏𝟏 𝒏𝒏

evens-or-odds

0-local 0-local 1-local

2-local 2-local 1-local

For uniform symmetric distributions,
locality of large constant is the same as locality of two



Proof Overview
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Proof Overview

How to rule out
Uniform over weight 𝑛𝑛/3
Uniform over weight ≥ 𝑛𝑛/2
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Proof Overview

How to rule out
Uniform over weight 𝑛𝑛/3
Uniform over weight ≥ 𝑛𝑛/2

General case

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds



Weight 𝒏𝒏/𝟑𝟑

Why can’t 𝒇𝒇 𝑼𝑼  be uniform over 𝒏𝒏-bit strings of weight 𝒏𝒏/𝟑𝟑?

𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input



Weight 𝒏𝒏/𝟑𝟑

Why can’t 𝒇𝒇 𝑼𝑼  be uniform over 𝒏𝒏-bit strings of weight 𝒏𝒏/𝟑𝟑?
Granularity issue! 

𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input



Weight 𝒏𝒏/𝟑𝟑

Why can’t 𝒇𝒇 𝑼𝑼  be uniform over 𝒏𝒏-bit strings of weight 𝒏𝒏/𝟑𝟑?
Granularity issue! 

𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

Marginal bias should be 𝟏𝟏/𝟑𝟑



Weight 𝒏𝒏/𝟑𝟑

Why can’t 𝒇𝒇 𝑼𝑼  be uniform over 𝒏𝒏-bit strings of weight 𝒏𝒏/𝟑𝟑?
Granularity issue! 

𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

Marginal bias should be 𝟏𝟏/𝟑𝟑

Output bits:   𝒃𝒃𝟏𝟏   𝒃𝒃𝟐𝟐   𝒃𝒃𝟑𝟑   ⋯⋯   𝒃𝒃𝒏𝒏

𝒓𝒓𝟏𝟏
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟐𝟐
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟑𝟑
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟒𝟒
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟓𝟓
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟔𝟔
∼ 𝟎𝟎,𝟏𝟏 ⋯⋯Input bits: 



Weight 𝒏𝒏/𝟑𝟑

Why can’t 𝒇𝒇 𝑼𝑼  be uniform over 𝒏𝒏-bit strings of weight 𝒏𝒏/𝟑𝟑?
Granularity issue! 

𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

Output bits:   𝒃𝒃𝟏𝟏   𝒃𝒃𝟐𝟐   𝒃𝒃𝟑𝟑   ⋯⋯   𝒃𝒃𝒏𝒏

𝒓𝒓𝟏𝟏
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟐𝟐
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟑𝟑
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟒𝟒
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟓𝟓
∼ 𝟎𝟎,𝟏𝟏

𝒓𝒓𝟔𝟔
∼ 𝟎𝟎,𝟏𝟏 ⋯⋯Input bits: 

Density is an integer multiple of 𝟏𝟏/𝟖𝟖
Cannot approx 𝟏𝟏/𝟑𝟑

Marginal bias should be 𝟏𝟏/𝟑𝟑



Weight 𝒏𝒏/𝟑𝟑 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

By granularity, each output bit produces 𝛀𝛀 𝟏𝟏  distance



Weight 𝒏𝒏/𝟑𝟑 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

By granularity, each output bit produces 𝛀𝛀 𝟏𝟏  distance

By concentration, 𝑲𝑲 independent output bits produce 𝟏𝟏 − 𝒆𝒆−𝛀𝛀 𝑲𝑲  distance



Weight 𝒏𝒏/𝟑𝟑 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
𝒇𝒇(𝑼𝑼) is the output dist of 𝒇𝒇 under uniform input

By granularity, each output bit produces 𝛀𝛀 𝟏𝟏  distance

By concentration, 𝑲𝑲 independent output bits produce 𝟏𝟏 − 𝒆𝒆−𝛀𝛀 𝑲𝑲  distance

Structural Lemma.
Conditioning on 𝒐𝒐 𝒏𝒏  input bits, we can find 𝛀𝛀 𝒏𝒏  
independent output bits.



Weight 𝒏𝒏/𝟑𝟑 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 is a local function
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Large distance either way
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evens, odds to be possible
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zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Locally sampleable symmetric distributions?
In progress: mixture of evens, odds, and 𝒑𝒑-biased

𝒑𝒑 and the mixing weights should be dyadic rational with constant denominator

Improving quantitative bounds?



Quantitative Bound

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Theorem [KOW’25+]. If 𝒏𝒏 ≥ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) and 
𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution, 
then 𝒇𝒇 𝑼𝑼  is 𝝐𝝐 ⋅ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) -close to one of the following six
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Theorem [KOW’25+]. If 𝒏𝒏 ≥ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) and 
𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution, 
then 𝒇𝒇 𝑼𝑼  is 𝝐𝝐 ⋅ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) -close to one of the following six

𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭 𝒅𝒅 = 𝟐𝟐𝟐𝟐𝟐𝟐
⋯

 of height 𝒅𝒅



Quantitative Bound

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Theorem [KOW’25+]. If 𝒏𝒏 ≥ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) and 
𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution, 
then 𝒇𝒇 𝑼𝑼  is 𝝐𝝐 ⋅ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) -close to one of the following six

Should be 𝝐𝝐 ⋅ 𝑶𝑶 𝟏𝟏
In progress



Quantitative Bound

Let 𝒇𝒇: 𝟎𝟎,𝟏𝟏 𝒎𝒎 → 𝟎𝟎,𝟏𝟏 𝒏𝒏 be a 𝒅𝒅-local function

zeros       ones       zeros-or-ones       evens       odds       evens-or-odds

Theorem [KOW’25+]. If 𝒏𝒏 ≥ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) and 
𝒇𝒇 𝑼𝑼  is 𝝐𝝐-close to a uniform symmetric distribution, 
then 𝒇𝒇 𝑼𝑼  is 𝝐𝝐 ⋅ 𝐭𝐭𝐥𝐥𝐭𝐭𝐭𝐭𝐭𝐭(𝒅𝒅) -close to one of the following six

Necessary for our structural lemma
But should be 𝐭𝐭𝐞𝐞𝐞𝐞(𝒅𝒅)



Thank you!
kewen_wu@berkeley.edu

https://shlw.github.io

mailto:Kewen_wu@berkeley.edu
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